$(1+\sqrt[n]{M})^n=2^n\cdot\sqrt M $ (TRUE/FALSE)
My try: Using binomial theorem, I got $$(1+\sqrt[n]{M})^n=\sum_{k=0}^n\binom{n}{k}\big(\sqrt[n]{M}\big)^{n-k}=\sum_{k=0}^n\frac{n!}{(n-k)!\cdot k!}\big(M^{\frac{1}{n}}\big)^{n-k}.$$
I don't know what to do next. Please help.