For $\alpha, \beta, \gamma \in (0,1)$ satisfying $\alpha+\beta+\gamma = 1$ and
$\mu \in \mathbb{C} \setminus [1,\infty)$, define
$$
F_{\alpha\beta}(\mu) = \int_0^1\frac{dx}{x^\alpha(1-x)^\beta(1-\mu x)^\gamma}
\quad\text{ and }\quad
\Delta = \frac{\Gamma(1-\alpha)\Gamma(1-\beta)}{\Gamma(1+\gamma)}
$$
When $|\mu| < 1$, we can rewrite the integral $F_{\alpha\beta}(\mu)$ as
$$\begin{align}
F_{\alpha\beta}(\mu)
= & \int_0^1 \frac{1}{x^\alpha(1-x)^{\beta}}\left(\sum_{n=0}^{\infty}\frac{(\gamma)_n}{n!}\mu^n x^n\right) dx
= \sum_{n=0}^{\infty}\frac{(\gamma)_n}{n!}\frac{\Gamma(n+1-\alpha)\Gamma(1-\beta)}{\Gamma(n+1+\gamma)}\mu^n\\
= & \Delta\sum_{n=0}^{\infty}\frac{(\gamma)_n (1-\alpha)_n}{n!(\gamma+1)_n}\mu^n
= \Delta\gamma \sum_{n=0}^{\infty}\frac{(1-\alpha)_n}{n!(\gamma+n)}\mu^n
\end{align}$$
This implies
$$
\mu^{-\gamma} \left(\mu\frac{\partial}{\partial \mu}\right) \mu^{\gamma} F_{\alpha\beta}(\mu) =
\Delta\gamma \sum_{n=0}^{\infty}\frac{(1-\alpha)_n}{n!}\mu^n
= \Delta\gamma\frac{1}{(1-\mu)^{1-\alpha}}
$$
and hence
$$F_{\alpha\beta}(\mu)
= \Delta\gamma \mu^{-\gamma} \int_0^\mu \frac{\nu^{\gamma-1}d\nu}{(1-\nu)^{1-\alpha}}
= \Delta\gamma \int_0^1 \frac{t^{\gamma-1} dt}{(1-\mu t)^{1-\alpha}}
= \Delta \int_0^1 \frac{dt}{(1 - \mu t^{1/\gamma})^{1-\alpha}}$$
Notice if we substitute $x$ by $y = 1-x$, we have
$$F_{\alpha\beta}(\mu) = \int_0^1 \frac{dy}{y^\beta(1-y)^\alpha(1-\mu - \mu y)^{\gamma}}
= \frac{1}{(1-\mu)^\gamma} F_{\beta\alpha}(-\frac{\mu}{1-\mu})$$
Combine these two representations of $F_{\alpha\beta}(\mu)$ and let $\omega = \left(\frac{\mu}{1-\mu}\right)^{\gamma}$, we obtain
$$F_{\alpha\beta}(\mu) = \frac{\Delta}{(1-\mu)^{\gamma}}\int_0^1 \frac{dt}{( 1 + \omega^{1/\gamma} t^{1/\gamma})^{1-\beta}} = \frac{\Delta}{\mu^\gamma}\int_0^\omega \frac{dt}{(1 + t^{1/\gamma})^{1-\beta}}$$
Let $(\alpha,\beta,\gamma) = (\frac14,\frac12,\frac14)$ and $\mu = \frac{\sqrt{3}}{2}$, the identity we want to check becomes
$$\frac{\Gamma(\frac34)\Gamma(\frac12)}{\Gamma(\frac54) (\sqrt{3})^{1/4}}\int_0^\omega \frac{dt}{\sqrt{1+t^4}} \stackrel{?}{=} \frac{2\sqrt{2}}{3\sqrt[8]{3}} \pi\tag{*1}$$
Let $K(m)$ be the complete elliptic integral of the first kind associated with modulus $m$. i.e.
$$K(m) = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-mx^2)}}$$
It is known that $\displaystyle K(\frac12) = \frac{8\pi^{3/2}}{\Gamma(-\frac14)^2}$. In term of $K(\frac12)$, it is easy to check $(*1)$ is equivalent to
$$\int_0^\omega \frac{dt}{\sqrt{1+t^4}} \stackrel{?}{=} \frac23 K(\frac12)\tag{*2}$$
To see whether this is the case, let $\varphi(u)$ be the inverse function of above integral.
More precisely, define $\varphi(u)$ by following relation:
$$u = \int_0^{\varphi(u)} \frac{dt}{\sqrt{1+t^4}}$$
Let $\psi(u)$ be $\frac{1}{\sqrt{2}}(\varphi(u) + \varphi(u)^{-1})$. It is easy to check/verify
$$
\varphi'(u)^2 = 1 + \varphi(u)^4
\implies
\psi'(u)^2 = 4 (1 - \psi(u)^2)(1 - \frac12 \psi(u)^2)
$$
Compare the ODE of $\psi(u)$ with that of a Jacobi elliptic functions with modulus $m = \frac12$, we find
$$\psi(u) = \text{sn}(2u + \text{constant} | \frac12 )\tag{*3}$$
Since we are going to deal with elliptic functions/integrals with $m = \frac12$ only,
we will simplify our notations and drop all reference to modulus, i.e
$\text{sn}(u)$ now means $\text{sn}(u|m=\frac12)$ and $K$ means $K(m = \frac12)$.
Over the complex plane, it is known that $\text{sn}(u)$ is doubly periodic with
fundamental period $4 K$ and $2i K$. It has two poles at $i K$ and $(2 + i)K$ in the fundamental domain.
When $u = 0$, we want $\varphi(u) = 0$ and hence $\psi(u) = \infty$. So the constant
in $(*3)$ has to be one of the pole. For small and positive $u$, we want $\varphi(u)$ and hence $\psi(u)$ to be positive. This fixes the constant to $i K$. i.e.
$$\psi(u) = \text{sn}(2u + iK )$$
and the condition $(*2)$ becomes whether following equality is true or not.
$$\frac{1}{\sqrt{2}} (\omega + \omega^{-1}) \stackrel{?}{=} \text{sn}( \frac43 K + i K)\tag{*4}$$
Notice $ 3( \frac43 K + i K) = 4 K + 3 i K $ is a pole of $\text{sn}(u)$. if one repeat
apply the addition formula for $\text{sn}(u+v)$
$$\text{sn}(u+v) = \frac{\text{sn}(u)\text{cn}(v)\text{dn}(v)+\text{sn}(v)\text{cn}(u)\text{dn}(u)}{1-m\,\text{sn}(u)^2 \text{sn}(v)^2}$$
One find in order for $\text{sn}(3u)$ to blow up, $\text{sn}(u)$ will be a root of
following polynomial equation:
$$3 m^2 s^8-4 m^2 s^6-4 m s^6+6 m s^4-1 = 0$$
Substitute $m = \frac12$ and $s = \frac{1}{\sqrt{2}}(t+\frac{1}{t})$ into this, the equation $\omega$ need to satisfy is given by:
$$(t^8 - 6 t^4 - 3)(3 t^8 + 6 t^4 - 1 ) = 0$$
One can check that $\omega = \sqrt[4]{\frac{\sqrt{3}}{2-\sqrt{3}}}$ is indeed a root of this polynomial. As a result, the original equality is valid.
by using the substitution $x \to 1-x$
– Alexander Vlasev Oct 27 '13 at 06:13$$\frac{, _2F_1\left(\frac{1}{4},\frac{3}{4};\frac{5}{4};\frac{\sqrt{3}}{2}\right)}{, _2F_1\left(\frac{3}{4},1;\frac{5}{4};-3-2 \sqrt{3}\right)}=\left(2 \left(2+\sqrt{3}\right)\right)^{3/4}$$
– Alexander Vlasev Oct 27 '13 at 06:17InverseBetaRegularizedwith rational arguments. Some results were easy to prove to be algebraic, and for some other algebraic candidates were suggested byRootApproximantthat agreed with the exact results up to thousands decimal digits, so they looked like plausible conjectures. As @Kirill mentioned above, there are above 40 such conjectures for moderate rational arguments. – Vladimir Reshetnikov Oct 31 '13 at 16:33InverseBetaRegularizedcan easily be trasformed to corresponding conjectures forBetaRegularized,Beta,Hypergeometric2F1and definite integrals from elementary functions. – Vladimir Reshetnikov Oct 31 '13 at 16:37