I want to solve a system of equations, but I seem to get it wrong.
Problem: see picture, and note that I should tell for which a I have
- no solution
- one solution
- $\infty$ solutions
Attempt:
$$\begin{matrix}i \\ ii \\ iii\end{matrix}\left\{\begin{matrix}x+y-az=3\\ ax-y+z=-2\\ -3x+y-z=-a+2\end{matrix}\right.$$
$ii+iii\to (a-3)x=-a\implies x=-\frac a{a-3}=\frac a{3-a}$
$i+ii\to (a+1)x+z(1-a)=1$ and $x=\frac a{3-a}\implies (a+1)\frac a{3-a}+z(1-a)=1\implies$
$$z=\frac {1-(a+1)\frac a{3-a}}{1-a}=\frac {a+3}{3-a}, a\ne 1,3$$
$$y=3-x+az=3-\frac a{3-a}+a\frac {a+3}{3-a}=\frac {3(3-a)-a(a+4)}{3-a},a\ne 1,3$$
No solutions <=> having $0,0,0 | a$ for some number a.
– jacob Oct 26 '13 at 07:20