Question: I can't seem to show that the limit of $(1+x^{n})^{\frac{1}{n}}$ as $n\rightarrow\infty$ is $x$, where $x$ is in the interval $[1,2]$.
Attempt: Let $y_{n}=(1+x^{n})^{\frac{1}{n}}$.
Then $\lim_{n\rightarrow\infty}{y_{n}}=\lim_{n\rightarrow\infty}{(1+x^{n})^{\frac{1}{n}}}$.
Taking logarithms we have $\lim_{n\rightarrow\infty}{\ln{y_{n}}}=\lim_{n\rightarrow\infty}{\frac{1}{n}\ln{(1+x^{n})}}$.
Here I decided to substituted $v=1/n$, so the limit is now taken as $v$ goes to $0$.
Then $\lim_{n\rightarrow\infty}{\ln{y_{n}}}=\lim_{v\rightarrow{0}}{v\ln{(1+x^{\frac{1}{v}})}}$.
Now the RHS is equivalent to $\lim_{v\rightarrow{0}}{v}\cdot\lim_{v\rightarrow{0}}{\ln{(1+x^{\frac{1}{v}})}}$.
The problem now is that this becomes the indeterminate $0\cdot\infty$.
Any help will be appreciated :)