Exercise 1.3.3(c) Let $0<p_0<p<p_1<\infty$ and let $T$ be an operator as in Theorem 1.3.2($\|T(f)\|_{L^{p_0,\infty}(Y)}\leq A_0\|f\|_{L^{p_0}(X)}$ for all $f\in L^{p_0}(X)$ and $\|T(f)\|_{L^{p_1,\infty}(Y)}\leq A_1\|f\|_{L^{p_1}(X)}$ for all $f\in L^{p_1}(X)$) that also satisfies $|T(f)|\leq T(|f|)$, for all $f\in L^{p_0}+L^{p_1}$.
(c) When $0<p_0<p_1<\infty$, then the norm of $T$ from $L^p$ to $L^p$ is at most
\[\min_{0<\lambda<1}p^{\frac{1}{p}}\left(\frac{B(p-p_0,p_0+1)}{(1-\lambda)^{p_0}}+\frac{\frac{p_1-p+1}{p_1-p}}{\lambda^{p_1}}\right)^{\frac{1}{p}}A_0^{\frac{1/p-1/p_1}{1/p_0-1/p_1}}A_1^{\frac{1/p_0-1/p}{1/p_0-1/p_1}}\]
where $B(s,t)$ is the Beta function. [Hint: When $p_1<\infty$ write $f=f_0+f_1$, where $f_0=f-\delta\alpha$ when $f\geq\delta\alpha$ and zero otherwise. Use that $|\{|T(f)|>\alpha\}|\leq|\{|T(f_0)|>(1-\lambda)\alpha\}|+|\{|T(f_1)|>\lambda\alpha\}|$ and optimize over $\delta>0$.]
MY ATTEMPT: From the hint, $f_0=\max(f-\delta\alpha,0)$ and $f_1=\min(f,\delta\alpha)$. We have \begin{align*} & d_{T(f)}(\alpha)\leq d_{T(f_0)}((1-\lambda)\alpha)+d_{T(f_1)}(\lambda\alpha)\\ \leq&\left(\frac{A_0}{(1-\lambda)\alpha}\right)^{p_0}\|f_0\|_{L^{p_0}}^{p_0}+\left(\frac{A_1}{\lambda\alpha}\right)^{p_1}\|f_1\|_{L^{p_1}}^{p_1}\\ =&\left(\frac{A_0}{(1-\lambda)\alpha}\right)^{p_0}\int_{f\leq\delta\alpha}(f-\delta\alpha)^{p_0}d\mu+\left(\frac{A_1}{\lambda\alpha}\right)^{p_1}\left[\int_{f>\delta\alpha}(\delta\alpha)^{p_1}d\mu+\int_{f\leq\delta\alpha}f^{p_1}d\mu\right] \end{align*} Hence, \begin{align*} &\|T(f)\|_{L^p}^p=\int_0^\infty p\alpha^{p-1}d_{T(f)}(\alpha)d\alpha\\ \leq&\left(\frac{A_0}{1-\lambda}\right)^{p_0}\int_0^\infty p\alpha^{p-p_0-1}\int_{f\leq\delta\alpha}(f-\delta\alpha)^{p_0}d\mu d\alpha\\ &+\left(\frac{A_1}{\lambda}\right)^{p_1}\left[\int_0^\infty p\alpha^{p-1}\int_{f>\delta\alpha}\delta^{p_1}d\mu d\alpha+\int_0^\infty p\alpha^{p-p_1-1}\int_{f\leq\delta\alpha}f^{p_1}d\mu d\alpha \right]\\ =&\frac{pA_0^{p_0}}{(1-\lambda)^{p_0}}\int_X\int_0^{f/\delta}f^{p_0}(1-\alpha\cdot\frac{\delta}{f})^{p_0}(\alpha\cdot\frac{\delta}{f})^{p-p_0-1}d(\alpha\cdot\frac{\delta}{f})(\frac{f}{\delta})^{p-p_0}d\mu\\ &+\left(\frac{A_1}{\lambda}\right)^{p_1}\left[\int_X\int_{f/\delta}^\infty p\alpha^{p-1}\delta^{p_1}d\alpha d\mu+\int_X f^{p_1}\int_{f/\delta}^\infty p\alpha^{p-p_1-1}d\alpha d\mu\right]\\ =&\frac{pA_0^{p_0}}{(1-\lambda)^{p_0}}\delta^{p_0-p}\|f\|_{L^p}^pB(p_0+1,p-p_0)+\frac{A_1^{p_1}}{\lambda^{p_1}}\left[\delta^{p_1-p}\|f\|_{L^p}^p+\frac{p}{p_1-p}\delta^{p_1-p}\|f\|_{L^p}^p\right]\\ =&\frac{pA_0^{p_0}}{(1-\lambda)^{p_0}}\delta^{p_0-p}\|f\|_{L^p}^pB(p_0+1,p-p_0)+\frac{p_1A_1^{p_1}}{(p_1-p)\lambda^{p_1}}\delta^{p_1-p}\|f\|_{L^p}^p \end{align*} when optimizing $\delta$ by taking derivatives of $\delta$, I cannot conclude the result.