Your test example is too specific: $B = I$, $C = 2I$, $C^{-1} = (1/2)I$. Of course that everything here commutes.
I tried the following random one (in Python3):
import numpy as np
A = np.array([[3,2,6],[4,1,5]])
B = np.array([[1,2],[3,4],[5,6]])
C = np.array([[2,1],[1,3]])
AB = np.dot(A, B)
Cinv = np.linalg.inv(C)
M1 = np.identity(2) + np.dot(np.dot(AB, AB.transpose()), Cinv)
M2 = np.identity(2) + np.dot(np.dot(AB.transpose(), AB), Cinv)
print("A =\n", A)
print("B =\n", B)
print("AB =\n", AB)
print("C =\n", C)
print("C^{-1} =\n", Cinv)
print("M1 =\n", M1)
print("M2 =\n", M2)
print("det M1 =", np.linalg.det(M1))
print("det M2 =", np.linalg.det(M2))
The output says that your statement is wrong:
A =
[[3 2 6]
[4 1 5]]
B =
[[1 2]
[3 4]
[5 6]]
AB =
[[39 50]
[32 42]]
C =
[[2 1]
[1 3]]
C^{-1} =
[[ 0.6 -0.2]
[-0.2 0.4]]
M1 =
[[ 1744. 535. ]
[ 1451.2 446.6]]
M2 =
[[ 869.2 808.6]
[ 1123.6 1047.8]]
det M1 = 2478.4
det M2 = 2204.8
Your proof is wrong because
$$\det\left( \prod_k M_k \right) = \det\left( \prod_k M_{p(k)} \right),$$
for all permutations $p$, but, generally,
$$\det\left( I + \prod_k M_k \right) \ne \det\left( I + \prod_k M_{p(k)} \right).$$
Even if you limit $A$ and $B$ to be square, the statement won't hold. For example, remove the third column/row from $A$ and $B$ above:
A = np.array([[3,2],[4,1]])
B = np.array([[1,2],[3,4]])
C = np.array([[2,1],[1,3]])
The result is:
det M1 = 172.0
det M2 = 151.0
As user1551 told you: try some random example first. Not "nice" ones like your example above, but completely random ones. If a statement is wrong, chances are that a random test will sink it.