0

Consider the following alternating sum

$$P = 1 - \sum_{n=1}^{\infty} \frac{(-1)^n}{p_n}$$

where $p_n$ is the $n$ th prime.

Is it true that

$$ P = \frac{27}{32} + \frac{\pi}{8}+\frac{5}{48 \pi} $$

?

mick
  • 17,886
  • It is false. See https://oeis.org/A078437 https://math.stackexchange.com/users/83800/gary gave me that and i seperated a question and asked him to answer it here – mick Jun 30 '25 at 01:42
  • see : https://math.stackexchange.com/questions/5079551/special-function-zeta-ps-0-implies-operatornameres-leq-frac34 – mick Jun 30 '25 at 01:44
  • @abiessu waiting for gary ... – mick Jun 30 '25 at 01:45

1 Answers1

4

By $\text{A}078437$, $$ \zeta _p (1) - \left( \frac{27}{32} + \frac{\pi}{8} + \frac{5}{48\pi} \right) = - 9.53 \ldots \times 10^{ - 9} \neq 0. $$

Gary
  • 36,640