I was trying solve this integral$$I= \int_{0}^{\pi/2} \frac{x}{\sin(x)} \ln\left(\frac{1+\cos(x) - \sin(x)}{1+\cos(x) + \sin(x)} \right) dx $$ let :$t=\tan(x/2)$ $$I = 2\int^1_0 \frac{\arctan(t)}{t}\ln\left({\frac{1-t}{1+t}}\right)dt$$
I have a problem evaluating it.
I try :$y=\frac{1-t}{1+t}$
\begin{align*} I &= 4\int^1_0\frac{\left({\frac{\pi}{4}-\arctan(y)}\right)\ln(y)}{1-y^2} dy=\pi\int^1_0 \frac{\ln(y)}{1-y^2}dy -4\int^1_0 \frac{\arctan(y)\ln(y)}{1-y^2}dy \\ &= -\frac{\pi^3}{8}-4\int^1_0 \frac{\arctan(y)\ln(y)}{1-y^2}dy\end{align*}
this integral complicated $\int^1_0 \frac{\arctan(y)\ln(y)}{1-y^2}dy$
I try to :
$$I = -\int^1_{-1}\int^1_0 \frac{\arctan(t)}{(1-at)}dtda$$
I don't know how to continue evaluating the integration.
$I_1$ is an easy integral, the real question is how does one solve $I_2$,
$$I_1=\int_{0}^{1} \frac{\ln(x)}{1 - x^2} , \mathrm{d}x=\sum_{n\ge 0}\int_0^1x^{2n}\ln(x),dx=-\sum_{n\ge 0}\frac{1}{\left(2n + 1\right)^{2}}\underset{\text{shift index}}=-\sum_{n\ge 1}\frac{1}{\left(2n\right)^{2}}\underset{\text{zeta function}}=-\frac{\pi^2}{8}$$
– Amrut Ayan Jun 22 '25 at 13:03One can try the below,
$$\color{red}{\operatorname{Li}_2(1-x) = \zeta(2)-\ln(x)\ln(1-x)-\operatorname{Li}_2(x)}$$
$$\color{red}{\operatorname{Li}_2(1 + x) = \zeta(2) - \ln x \ln(1 + x) - i\pi \ln(1 + x) - \operatorname{Li}_2(-x)}$$
But they lead to integrals which diverge
– Amrut Ayan Jun 22 '25 at 13:05$${\ln\left(\frac{1-x}{1+x}\right)=-2\sum_{n=0}^\infty\frac{x^{2n+1}}{2n+1}}$$
$$I=-2\sum_{n=0}^\infty\frac{1}{2n+1}\int^1_0 x^n \arctan(x)\mathrm{d}x$$
$$\int_{0}^{1} x^{n} \arctan x , dx = \frac{1}{(2n+2)} \left( \frac{\pi}{2} - \beta \left( \frac{n}{2} + 1 \right) \right)$$
$$I=-\pi\sum_{n=0}^\infty\frac{1}{(2n+1)(2n+2)}+2\sum_{n=0}^\infty\frac{1}{(2n+1)}\beta \left( \frac{n}{2} + 1 \right)$$
– Amrut Ayan Jun 22 '25 at 13:45