Background : While reviewing my old answer from here, where I had solved this integral,
$$\int_0^\infty\frac{x}{(e^x-1)(x^2+4\pi^2)}dx$$
I found this question and I'm trying to solve this,
$$I=\int_0^\infty\frac{x}{(e^x-1)(x^2+4\pi^2)^2}dx$$
$$\color{red}{\mathcal{L}\left(\frac{\sin(a t)-a t \cos(a t) }{2a^2}\right)=\frac{a}{(s^2+a^2)^2}\underset{s=2\pi, a=x}\implies \mathcal{L}\left(\frac{\sin(x t)-x t \cos(x t) }{2x^2}\right)=\frac{x}{(x^2+4\pi^2)^2}}$$
$$\color{red}{\mathcal{L}\left(\frac{\sin(x t)-x t \cos(x t) }{2x^2}\right)=\frac{x}{(x^2+4\pi^2)^2}\implies\int_0^\infty e^{-st} \left(\frac{\sin(x t)-x t \cos(x t) }{2x^2}\right)\,dt}$$
Therefore,
$$I=\frac12\int_0^\infty\frac{1}{e^x-1}\int_0^\infty e^{-2\pi t} \left(\frac{\sin(x t)-x t \cos(x t) }{x^2}\right)\,dt\,dx$$
$$2I=\int_0^\infty\frac{1}{e^x-1}\left(\int_0^\infty e^{-2\pi t} \frac{\sin(xt)}{x^2}\,dt-\int_0^\infty e^{-2\pi t} \frac{t\cos(xt)}{x}\,dt\right)\,dx$$
$$2I=\int_0^\infty e^{-2\pi t} \int_0^\infty\frac{1}{e^x-1}\frac{\sin(xt)}{x^2}\,dx\,dt-\int_0^\infty te^{-2\pi t} \int_0^\infty\frac{1}{e^x-1}\frac{\cos(xt)}{x}\,dx\,dt$$
$$\color{red}{\sum_{n=1}^\infty e^{-nx}=\frac{1}{e^x-1}}$$
$$2I=\int_0^\infty e^{-2\pi t} \sum_{n=1}^\infty\int_0^\infty e^{-nx}\frac{\sin(xt)}{x^2}\,dx\,dt-\int_0^\infty te^{-2\pi t} \sum_{n=1}^\infty\int_0^\infty e^{-nx}\frac{\cos(xt)}{x}\,dx\,dt$$
Now I'm stuck because I've never seen anyone performing these,
$\mathcal{L}\left\{\frac{\cos(at)}{t}\right\}$, although I get this but it scares me that I will need to proceed with a series involving a logarithm in it
$\mathcal{L}\left\{\frac{\sin(at)}{t^2}\right\}$
So how do I deal with this?
Note : I'm not looking for alternate methods to solve the original integral.
Since the transform exists for the combination, here's my work so far,
$$2I=\int_0^\infty e^{-2\pi t} \int_0^\infty\frac{1}{e^x-1}\frac{\sin(xt)}{x^2}\,dx\,dt-\int_0^\infty te^{-2\pi t} \int_0^\infty\frac{1}{e^x-1}\frac{\cos(xt)}{x}\,dx\,dt$$
$$\color{red}{\sum_{n=1}^\infty e^{-nx}=\frac{1}{e^x-1}}$$
$$2I=\int_0^\infty e^{-2\pi t} \sum_{n=1}^\infty\int_0^\infty e^{-nx}\frac{\sin(xt)}{x^2}\,dx\,dt-\int_0^\infty te^{-2\pi t} \sum_{n=1}^\infty\int_0^\infty e^{-nx}\frac{\cos(xt)}{x}\,dx\,dt$$
$$2I=\int_0^\infty e^{-2\pi t} \sum_{n=1}^\infty\int_0^\infty e^{-nx}\left(\frac{\sin(xt)}{x^2}-\frac{t\cos(xt)}{x}\right)\,dx\,dt$$
$$I=\int_0^\infty t e^{-2\pi t} \sum_{n=1}^\infty \frac{1}{(n^2+t^2)^2}\,dt$$
Using this, we can differentiate the below sum,
$$\color{red}{\sum_{n=1}^\infty \frac{1}{n^2+t^2} =\frac12\left(\frac{\pi t \coth(\pi t)}{t^2}-\frac{1}{t^2}\right)}$$
$$\color{red}{\sum_{n=1}^{\infty} \frac{1}{(n^2+t^2)^2} = \frac{t^2\,\pi^2\,{\rm csch}^2(t\pi) + t\pi\,{\rm coth}(t\pi) -2}{4t^4}=\frac{\pi^2}{4}\frac{{\rm csch}^2(t\pi)}{t^2}+\frac{\pi}{4}\frac{{\rm coth}(t\pi)}{t^3}-\frac12 \frac{1}{t^4}}$$
$$I=\int_0^\infty t e^{-2\pi t} \left(\frac{\pi^2}{4}\frac{{\rm csch}^2(t\pi)}{t^2}+\frac{\pi}{4}\frac{{\rm coth}(t\pi)}{t^3}-\frac12 \frac{1}{t^4}\right)\,dt$$
$$I=\frac{\pi^2}4\int_0^\infty t^{-1} e^{-2\pi t}\rm csch^2(t\pi)\,dt+\frac{\pi}4\int_0^\infty t^{-2} e^{-2\pi t}\coth(t\pi)\,dt-\frac12\int_0^\infty t^{-3} e^{-2\pi t}\,dt$$
$$I=\int_0^\infty\frac{\pi^2}4 t^{-1} e^{-2\pi t}\rm csch^2(t\pi)\,dt+\frac{\pi}4 t^{-2} e^{-2\pi t}\coth(t\pi)-\frac12t^{-3} e^{-2\pi t}\,dt$$
Leads to another three difficult integrals (with the third one being divergent-?!)