0

Evaluate $$ \int_{0}^{\pi/2} x^2 \ln^2(2\cos x) \ln^2(2\sin x) \, dx $$

(Collective) attempt so far:

Let the integral be $I$. Let $A = \ln(2\cos x)$ and $B = \ln(2\sin x)$. The product is $AB$. We can express $AB$ in terms of $A+B$ and $A-B$. $$A+B = \ln(2\cos x) + \ln(2\sin x) = \ln(4\sin x\cos x) = \ln(2\sin(2x))$$ $$A-B = \ln(2\cos x) - \ln(2\sin x) = \ln(\cot x)$$

From these, we can write $A = \frac{(A+B)+(A-B)}{2}$ and $B = \frac{(A+B)-(A-B)}{2}$. The product is $AB = \frac{1}{4}((A+B)^2 - (A-B)^2)$. The term in the integrand is $\ln^2(2\cos x)\ln^2(2\sin x) = (AB)^2$. So, $(AB)^2 = \frac{1}{16} \left( \ln^2(2\sin(2x)) - \ln^2(\cot x) \right)^2$

The integral becomes: $$ I = \frac{1}{16} \int_{0}^{\pi/2} x^2 \left( \ln^2(2\sin(2x)) - \ln^2(\cot x) \right)^2 dx $$ Expanding the square, we get: $$ I = \frac{1}{16} \int_{0}^{\pi/2} x^2 \left( \ln^4(2\sin(2x)) - 2\ln^2(2\sin(2x))\ln^2(\cot x) + \ln^4(\cot x) \right) dx $$ This splits the integral into three parts: $$I = \frac{1}{16} (I_1 - 2I_2 + I_3)$$ where $$I_1 = \int_0^{\pi/2} x^2 \ln^4(2\sin(2x)) \, dx$$ $$I_2 = \int_0^{\pi/2} x^2 \ln^2(2\sin(2x)) \ln^2(\cot x) \, dx$$ $$I_3 = \int_0^{\pi/2} x^2 \ln^4(\cot x) \, dx$$

These three integrals are themselves very difficult. We have not been able to make any progress further than this. According to WA the solution is $1.094$. But we are interested in a closed form solution.


Edit: Here is the link to the file

import numpy as np
from scipy.integrate import quad

pi = np.pi

def integrand1(x): if x == 0 or x == pi/2: return 0.0 return x2 * np.log(2 * np.sin(2 * x))4

def integrand2(x): if x == 0 or x == pi/2: return 0.0 return x2 * (np.log(2 * np.sin(2*x))2) * (np.log(1/np.tan(x))**2)

def integrand3(x): if x == 0 or x == pi/2: return 0.0 return x2 * np.log(1/np.tan(x))4

numerical_I1, error_I1 = quad(integrand1, 0, pi/2, limit=200) numerical_I2, error_I2 = quad(integrand2, 0, pi/2, limit=200) numerical_I3, error_I3 = quad(integrand3, 0, pi/2, limit=200)

print("--- Numerical Results ---") print(f"Approximation for I₁: {numerical_I1:.5f} (Estimated error: {error_I1:.2e})") print(f"Approximation for I₂: {numerical_I2:.5f} (Estimated error: {error_I2:.2e})") print(f"Approximation for I₃: {numerical_I3:.5f} (Estimated error: {error_I3:.2e})")

Running this script produces the following output:

Approximation for I₁: 14.73628 (Estimated error: 2.17e-07)
Approximation for I₂: 27.06450 (Estimated error: 9.97e-08)
Approximation for I₃: 56.89675 (Estimated error: 4.81e-07)
  • 1
    Some useful references - https://de.wikibooks.org/wiki/Formelsammlung_Mathematik:_Bestimmte_Integrale:_Form_R(x,log,cos)#0.2 and https://arxiv.org/pdf/1705.04723 – Amrut Ayan Jun 15 '25 at 15:12
  • 1
    The solution is not too hard, only long calculations – Rana Ranino Jun 15 '25 at 19:03
  • 1
    From the identity: $$ {{12\log^2(A)\log^2(B)}{=\log^4(A/B)}{+\log^4(A,B)}{-2\log^4(A)}{-2\log^4(B)}} $$ Adjust the start to: $$ {I=\frac{1}{12}\int\limits_{0}^{\frac{\pi}{2}}x^2}{\left[{\log^4(\tan{x})}{+\log^4(2\sin{2x})}{-2\log^4(2\sin{x})}{-2\log^4(2\cos{x})}\right]dx} $$ – Hazem Orabi Jun 18 '25 at 01:06
  • 1
    The result is $\frac{640}{69} \pi \Re\left(\text{Li}_6\left(\frac{1}{2}+\frac{i}{2}\right)\right)+\frac{1}{4} \pi ^3 \text{Li}_4\left(\frac{1}{2}\right)-\frac{188}{69} \pi \text{Li}_6\left(\frac{1}{2}\right)-\pi \text{Li}_4\left(\frac{1}{2}\right) \log ^2(2)-2 \pi \text{Li}_5\left(\frac{1}{2}\right) \log (2)-\frac{23 \pi \zeta (3)^2}{64}-\frac{7}{24} \pi \zeta (3) \log ^3(2)+\frac{7}{32} \pi ^3 \zeta (3) \log (2)+\frac{155}{64} \pi \zeta (5) \log (2)-\frac{1667 \pi ^7}{290304}-\frac{71 \pi \log ^6(2)}{2484}+\frac{323 \pi ^3 \log ^4(2)}{9936}-\frac{1171 \pi ^5 \log ^2(2)}{79488}$. – Po1ynomial Jun 26 '25 at 18:43
  • Nothing beyond available techniques, but rather tedious computation. – Po1ynomial Jun 26 '25 at 18:45

1 Answers1

-1

Too long for comment, $$ \int_0^{\frac{\pi}{2}} x^2 \ln^2(2 \cos x) \ln^2(2 \sin x)\, dx = \ln^4 2 \int_0^{\frac{\pi}{2}} x^2\, dx + 2 \ln^3 2 \int_0^{\frac{\pi}{2}} x^2 \ln \sin x\, dx + \ln^2 2 \int_0^{\frac{\pi}{2}} x^2 \ln^2 \sin x\, dx + 2 \ln^3 2 \int_0^{\frac{\pi}{2}} x^2 \ln \cos x\, dx + 4 \ln^2 2 \int_0^{\frac{\pi}{2}} x^2 \ln \cos x \ln \sin x\, dx + 2 \ln 2 \int_0^{\frac{\pi}{2}} x^2 \ln^2 \sin x \ln \cos x\, dx + \ln^2 2 \int_0^{\frac{\pi}{2}} x^2 \ln^2 \cos x\, dx + 2 \ln 2 \int_0^{\frac{\pi}{2}} x^2 \ln \sin x \ln^2 \cos x\, dx + \int_0^{\frac{\pi}{2}} x^2 \ln^2 \cos x \ln^2 \sin x\, dx $$

$$ I = I_1 + I_2 + I_3 + I_4 + I_5 + I_6 + I_7 + I_8 + I_9 $$

  • $I_1 $ is trivial
  • $ I_2, I_3, I_4, I_7 $ is covered in this paper (Requires $ \frac{\pi}{2} - x $ transformation for $ I_4, I_7 $)
  • $I_5 $ is extensively covered in this post

Most of the above are derived using these Fourier series,

$$ - \ln(\sin x) = \sum_{k=1}^\infty \frac{\cos(2k x)}{k} + \ln 2 $$

$$ - \ln(\cos x) = \sum_{k=1}^\infty \frac{(-1)^k \cos(2k x)}{k} + \ln 2 $$

We are only required to compute, $$ I_6 = \int_0^{\frac{\pi}{2}} x^2 \ln^2 \sin x \ln \cos x\, dx $$

Which was computed in this post,

$$\int_0^{\frac{\pi}{2}} x^2 \ln^2 \sin x \ln \cos x \, dx = \frac{\pi^3 \zeta(3)}{96} - \frac{17 \pi \zeta(5)}{64} + \frac{1}{8} \pi \zeta(3) \log^2(2) - \frac{1}{24} \pi^3 \log^3(2) + \frac{1}{320} \pi^5 \log(2)$$

Run a $ \frac{\pi}{2} - x $ transformation and you can get $I_8$ done.

We now require $I_9$,

$$I_9=\int_0^{\frac{\pi}{2}} x^2 \ln^2(\cos x)\ln^2(\sin x)\, dx$$

$$a^2b^2 =\frac{1}{12}(a+b)^4+\frac{1}{12}(a-b)^4-\frac16a^4-\frac16b^4$$

$$a=\ln (\cos x), b=\ln(\sin x)$$

$$\ln^2(\cos x)\ln^2(\sin x) = \frac{1}{12} \ln^4\left(\frac{\sin(2x)}{2}\right) + \frac{1}{12} \ln^4(\cot x) - \frac{1}{6} \ln^4(\cos x) - \frac{1}{6} \ln^4(\sin x)$$

$$x^2 \ln^2(\cos x)\ln^2(\sin x) = \frac{x^2}{12} \ln^4(\sin(2x)) - \frac{x^2}{3} \ln^3(\sin(2x)) \ln 2 + \frac{x^2}{2} \ln^2(\sin(2x)) \ln^2 2 - \frac{x^2}{3} \ln(\sin(2x)) \ln^3 2 + \frac{x^2}{12} \ln^4 2 + \frac{x^2}{12} \ln^4(\cot x) - \frac{x^2}{6} \ln^4(\cos x) - \frac{x^2}{6} \ln^4(\sin x)$$

$$I_9 = \frac{1}{12} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\sin(2x)) dx - \frac{1}{3} \ln 2 \int_0^{\frac{\pi}{2}} x^2 \ln^3(\sin(2x)) dx + \frac{1}{2} \ln^2 2 \int_0^{\frac{\pi}{2}} x^2 \ln^2(\sin(2x))dx - \frac{1}{3} \ln^3 2 \int_0^{\frac{\pi}{2}} x^2 \ln(\sin(2x))\, dx + \frac{1}{12} \ln^4 2 \int_0^{\frac{\pi}{2}} x^2 \, dx + \frac{1}{12} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\cot x)\, dx - \frac{1}{6} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\cos x)\, dx - \frac{1}{6} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\sin x)\, dx$$

$$I_9=\frac{1}{96} \int_0^\pi t^2 \ln^4(\sin t)\, dt - \frac{1}{24} \ln 2 \int_0^\pi t^2 \ln^3(\sin t)\, dt - \frac{1}{16} \ln^2 2 \int_0^\pi t^2 \ln^2(\sin t)\, dt - \frac{1}{24} \ln^3 2 \int_0^\pi t^2 \ln(\sin t)\, dt - \frac{1}{12} \ln^4 2 \int_0^{\frac{\pi}{2}} x^2 \, dx - \frac{1}{12} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\cot x)\, dx - \frac{1}{6} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\cos x)\, dx - \frac{1}{6} \int_0^{\frac{\pi}{2}} x^2 \ln^4(\sin x)\, dx$$

Now once again we find many of these integrals are covered in this paper

Except $\int_0^{\frac{\pi}{2}} x^2 \ln^4(\cot x)\, dx$, that will be added in when I find a cleaner way to solve.

Amrut Ayan
  • 8,887