Let $X= L^2[0,1]$, and $A:u(t)\mapsto-u''(t)$. The domain of $A$ is $$ D(A)=\{ u\in C^2[0,1]: u(0)=u(1), u'(0)= u'(1) \} $$ Then, how to show $A$ is a closed linear operator?
Definition: $A$ is a closed linear operator, if for any $\{x_n\}\subset D(A)$ satisfying $x_n\to x \in X$ and $Ax_n \rightarrow y$, we have $x\in D(A)$ and $Ax=y$.
I get the problem in a Chinese functional analysis book.
Source of the problem.(translated) Perhaps there is indeed a mistake in this example. If so, could you tell me which book has a similar example?
Example 2.6.2 Suppose that $\mathscr{X}=L^2[0,1], A: u(t)\mapsto -\frac{d^2}{dt^2}u(t)$, where $$D(A)=\{u\in C^2[0,1]\vert u(0)=u(1), u'(0)=u'(1)\},$$ then $A$ is a closed linear operator and $$\sigma(A)=\sigma_p(A)=\{(2n\pi)^2\vert n=0,1,\cdots\}.$$
Proof: On the one hand, we have $$-\frac{d^2}{dt^2}\sin(2n\pi t)=(2n\pi)^2\sin(2n\pi t)\quad \text{and}\quad -\frac{d^2}{dt^2}\cos(2n\pi t)=(2n\pi)^2\cos(2n\pi t), \forall\ n\in\mathbb{N}.$$ On the other hand, when $\lambda\neq (2n\pi)^2$, $\forall\ f\in L^2[0,1]$, the equation $$\left(-\frac{d^2}{dt^2}-\lambda\right)u(t)=f(t)$$ has a unique solution $$u(t)=\sum_{n=-\infty}^\infty\frac{C_n}{(2n\pi)^2-\lambda}e^{2\pi int},$$ where $$C_n=\int_0^1f(t)e^{-2\pi int}dt\ (n\in\mathbb{Z}).$$ It's easy to check that $u\in D(A)$ and $$\vert\vert u\vert\vert^2=\sum_{n=-\infty}^\infty\frac{\vert C_n\vert}{\vert (2n\pi)^2-\lambda\vert^2}\leq M_\lambda^2\sum_{n==\infty}^\infty\vert C_n\vert^2=M_\lambda^2\vert\vert f\vert\vert^2,$$ where $$M_\lambda=\sup_{n\in\mathbb{Z}}\frac{1}{\vert (2n\pi)^2-\lambda^2 \vert}<\infty.$$