2

I have been trying to find the closed form for ${}_2F_1\left(1, 2n+2; 2n+3; -\frac{1}{a} \right)$,

Background : I'm trying to solve the below integral,

$$I=\int_0^1 \frac{1}{x + a} \ln \left(\frac{1 + x}{1 - x} \right) \,dx, a\in \mathbb{C}$$

Here's how I am intending to solve,

$$\color{red}{\ln\left(\frac{1+x}{1-x}\right)=2\sum_{n\ge0}\frac{x^{2n+1}}{2n+1}}$$

$$I=2\sum_{n\ge0}\frac{1}{2n+1}\int_0^1 \frac{x^{2n+1}}{a+x} \,dx$$

$$\color{red}{\int_0^u \frac{x^{\mu - 1} \, dx}{(1 + \beta x)^\nu} = \frac{u^\mu}{\mu} \, {}_2F_1\left(\nu, \mu; 1 + \mu; -\beta u\right)}$$

$$I=\frac2a\sum_{n\ge0}\frac{{}_2F_1\left(1, 2n+2; 2n+3; -\frac{1}{a} \right)}{(2n+1)(2n+2)}$$

Now, I am not able to move forward.

It seems that the closed form I'm trying to look for is somewhat of the below form,

$${}_2F_1\left(a, b; b+1; z \right)=b z^{-b} \beta_z(b, 1 - a)$$

So, we can put in $a=1,b=2n+2, z=-\frac{1}{a}$, but it does not seem to be easy.

$${}_2F_1\left(1, 2n+2; 2n+3; {-\frac{1}{a}} \right)=(2n+2) \left(\frac{-1}{a}\right)^{-(2n+2)} \beta_{-\frac{1}{a}}(2n+2, 0)$$

$$I=\frac2 {a^3}\sum_{n\ge0}\frac{\beta_{-\frac{1}{a}}(2n+2, 0)}{a^{2n}(2n+1)}$$

Amrut Ayan
  • 8,887
  • 2
    I think that using series you make the problem much more complicated than it is – Claude Leibovici Jun 15 '25 at 08:48
  • 1
    with AI: $$, _2F_1\left(1,2 n+2;2 n+3;-\frac{1}{a}\right)=-(2 n+2) a^{2 n+2} \log \left(1+\frac{1}{a}\right)-(2 n+2) \sum _{k=1}^{2 n+1} \frac{(-1)^k a^{2 n+2-k}}{k}$$ Mathematica can compute your integral. – Mariusz Iwaniuk Jun 15 '25 at 09:12
  • @MariuszIwaniuk I was hoping for a simpler closed form, thanks, not going to be easy handling this series without Mathematica – Amrut Ayan Jun 15 '25 at 10:19
  • $$\begin{align} &I = \log(2)\log\left(\frac{a+1}{a-1}\right) + \text{Li}_2\left(\frac{-2}{a-1}\right) - \text{Li}_2\left(\frac{-1}{a-1}\right) + \text{Li}_2\left(\frac{1}{a+1}\right) \[2mm] &\color{blue}{\Re(a)\notin[-1,0)} \end{align}$$ – Hazem Orabi Jun 15 '25 at 19:28
  • @Lai that’s the original problem I was trying to solve but with a different approach – Amrut Ayan Jun 16 '25 at 06:50

0 Answers0