The integral posted six years ago contains 10 solutions for proving that $$\int_0^\infty\left(\arctan \frac1x\right)^2 \mathrm d x = \pi\ln 2,$$ I then want to go further with the general case
$$I_n=\int_0^\infty\left(\arctan \frac1x\right)^n \mathrm d x$$
with the usual substitution $y=\arctan \frac{1}{x}$ and obtain
$$ \begin{aligned} I_n & =-\int_0^{\frac{\pi}{2}} y^n d(\cot y) \\ & =n \int_0^{\frac{\pi}{2}} y^{n-1} \cot y d y \\ & =n \int_0^{\frac{\pi}{2}} y^{n-1} d(\ln (\sin y)) \\ & =-n(n-1) \int_0^{\frac{\pi}{2}} y^{n-2} \ln (\sin y) d y \end{aligned} $$ Let’s start with the smaller one $n=3$. Then the Fourier series of $\ln(\sin y)$ come to my mind
$$ \ln(\sin y)=-\ln 2-\sum_{n=1}^{\infty} \frac{\cos (2 k y)}{k} $$
and arrived at $$ \begin{aligned} \int_0^{\frac{\pi}{2}} y \ln (\sin y) d y & =-\int_0^\frac \pi 2 y\left(\ln 2+\sum_{k=1}^\infty \frac{\cos (2ky)}{k}\right) d y\\&=-\frac{\pi^2}{8} \ln 2-\sum_{k=1}^{\infty} \frac{1}{k} \int_0^{\frac{\pi}{2}} y \cos (2 k y) d y \\&=-\frac{\pi^2}{8} \ln 2-\sum_{k=1}^{\infty} \frac{1}{k} \cdot \frac{\cos (\pi k)-1}{4 k^2} \\ & =-\frac{\pi^2}{8} \ln 2-\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^3}\left[(-1)^k-1\right] \\ & =-\frac{\pi^2}{8} \ln 2+\frac{1}{4} \sum_{k=1}^{\infty} \frac{2}{(2 k+1)^3} \\ & =-\frac{\pi^2}{8} \ln 2+\frac{1}{2}\left[\sum_{k=1}^{\infty} \frac{1}{k^3}-\sum_{k=1}^{\infty} \frac{1}{(2 k)^3}\right] \\ & =-\frac{\pi^2}{8} \ln 2+\frac{7}{16} \zeta(3) \end{aligned} $$
Plugging back yields $$I_3=\frac{3}{4} \pi^2 \ln 2-\frac{21}{8} \zeta(3)$$
For $n=4$, we have
$$ \begin{aligned} \int_0^{\frac{\pi}{2}} y^3 \ln (\sin y) d y = & -\frac{\pi^3}{24} \ln 2-\sum_{k=1}^{\infty} \frac{1}{k} \int_0^{\frac{\pi}{2}} y^2 \cos (2 k y) d y \\ = & -\frac{\pi^3}{24} \ln 2-\frac{\pi}{4} \sum_{k=1}^{\infty} \frac{(-1)^k}{k^3} \\ = & -\frac{\pi^3}{24} \ln 2+\frac{\pi}{4}\left[\sum_{k=1}^{\infty} \frac{1}{k^3}-2 \sum_{k=1}^{\infty} \frac{1}{(2 k)^3}\right] \\ = & -\frac{\pi^3}{24} \ln 2+\frac{\pi}{4}\left(1-\frac{1}{4}\right) \zeta(3) \\ = & -\frac{\pi^3}{24} \ln 2+\frac{3 \pi}{16} \zeta(3) \end{aligned} $$ Hence
$$ I_4=\frac{\pi^3}{2} \ln 2-\frac{9 \pi}{4} \zeta(3) $$
However, in general, $$ \int_0^{\frac{\pi}{2}} y^n \ln (\sin y) d y = -\frac{\ln 2}{n+1}\left(\frac{\pi}{2}\right)^{n+1}-\sum_{k=1}^{\infty} \frac{1}{k} \int_0^{\frac{\pi}{2}} y^n \cos (2 k y) d y $$ where the last integral becomes complicated for higher powers $n$.
My Question:
Do we have any solution for the first or last integral?
This has been asked before in this post. You will find that the usual suspects have already answered it.
– Eli Bartlett Jun 13 '25 at 16:10