I am interested in evaluating the integral $$ I = \int_{-\infty}^\infty\frac{\cos(kx)}{\sqrt{x^2+a^2}}\exp\left(-k\sqrt{x^2 + a^2}\right)dx $$
I have no clue where to start. I tried making $x=a\sinh(t)$ substitution, and then I got: $$ I = \int_{-\infty}^\infty\cos(ka\sinh(t))\exp(-ka\cosh(t))dt $$ $$ I = Re\int_{-\infty}^\infty\exp\left[ka(i\sinh(t) - \cosh(t))\right]dt $$
Any hints?
PS.: That integral came from trying to calculate the electric field at coordinates $(0, 0, a)$ due to an infinite plane at $z=0$ with surface charge density of $\sigma(x, y) = \sigma_0\cos(kx)\cos(ky)$. Not sure if this helps. $$ E = \frac{\sigma_0}{4\pi\epsilon_0}\int_{-\infty}^\infty\int_{-\infty}^\infty\frac{\cos(kx)\cos(ky)}{x^2 + y^2 + a^2}dxdy = \frac{\sigma_0}{4\epsilon_0}\int_{-\infty}^\infty\frac{\cos(kx)}{\sqrt{x^2+a^2}}\exp\left(-k\sqrt{x^2 + a^2}\right)dx $$
Where I used $$\int_{-\infty}^\infty\frac{\cos(kt)}{t^2 + b^2}dt = \frac{\pi}{b}e^{-kb}$$
to solve for the integral in y.