How can I remove the outer square of $ \sqrt{11 - \sqrt{3}} $, so that we don't have nested root, like we can do for $ \sqrt{4 - \sqrt{7}} $ as shown below?
$$ \sqrt{4 - \sqrt{7}} = \sqrt{(4 - \sqrt{7}) \times \frac{2}{2}} \quad \text{(multiplying by } \frac{2}{2} \text{)} \\ = \sqrt{\frac{8 - 2\sqrt{7}}{2}} \\ = \sqrt{\frac{(\sqrt{7} - \sqrt{1})^2}{2}} \quad \because 8 - 2\sqrt{7} = (\sqrt{7} - \sqrt{1})^2 \\ = \frac{\sqrt{7} - \sqrt{1}}{\sqrt{2}} \\ = \frac{\sqrt{7} - 1}{\sqrt{2}} $$
This method works for $ \sqrt{4 - \sqrt{7}} $ but not for $ \sqrt{11 - \sqrt{3}} $. I want to know a general method for it.
I need to know this because in solving inequalities like $ \sqrt{x-6} - \sqrt{10-x} \geq 1$, I get probable solutions in the form like $ \frac{ 8 \pm \sqrt{ 7 }}{ 2 } $ or $ \sqrt{4 - \sqrt{7}} $ and hence in verification of whether these probable solutions are actual solutions I get nested roots.