I am evaluating the classical series $\lim\limits_{n\to\infty}\sum\limits_ {k=1}^{n-1}\frac{k^n}{n^n}$, but I want to know why the following solution of mine gives a wrong answer.
First I used the fact that $1^n+2^n+\cdots+k^n=f_n(k)$, where $f_n(k)$ is a polynomial with leading term $\frac1{n+1}k^{n+1}$. Thus, we have $$\lim\limits_{n\to\infty}\sum\limits_{k=1}^{n-1}\frac{k^n}{n^n}=\lim_{n\to\infty}\frac1{n^n}\sum_{k=1}^{n-1}k^n=\lim_{n\to\infty}\frac{\frac1{n+1}(n-1)^{n+1}}{n^n}=\lim_{n\to\infty}\left(1-\frac1n\right)^n\frac{n-1}{n+1}=\frac1{\rm e}.$$
The answer should be $\frac1{\rm e-1}$ though.