-5

$$\zeta(2) = \sum_{n>0} \frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!} $$

How to show this ?

In particular I am intrested in showing it without complex numbers or complex analysis.

Do similar identities exist for $\zeta(3)$, $\zeta(4)$ or $\zeta(5)$ ?

Somos
  • 37,457
  • 3
  • 35
  • 85
mick
  • 17,886

1 Answers1

2

$$\zeta(2) = \sum_{n>0} \frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!} $$

We can show (with the taylor series for cos and sin) that

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2n+1) x^{2n+3}} { (2n+3)!} = x - 2 \sin(x) + x \cos(x)$$

Plugging in $\pi = x$ we get

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2n+1) \pi^{2n+3}} { (2n+3)!} = \pi - 2 \sin(\pi) + \pi \cos(\pi) = 0$$

and likewise by dividing both sides by $\pi$

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!} = 0$$

Now

$$\sum_{n=0}^{\infty} \frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!} - \sum_{n>0} \frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!} = [\frac{(-1)^{n+1} (2n+1) \pi^{2n+2}} { (2n+3)!}]_{n=0} = - \frac{\pi^2}{6} = - \zeta(2)$$

hence the proposed value is correct.

QED

mick
  • 17,886