3

Evaluate Without complex analysis :$\int^{\infty}_0 \frac{\cos(ax^2)}{1+2\cosh(x)} dx$

I found this: $$\int_{0}^{\infty}\frac{\cos(\pi x^{2})}{1+2\cosh(\frac{2\pi}{\sqrt{3}}x)}dx=\frac{\sqrt{2}-\sqrt{6}+2}{8}$$

I will try to solve without complex analysis : $$I = \int^{\infty}_0 \frac{\cos(ax^2)}{1+2\cosh(x)} dx$$

My attempt: $$I = \int^{\infty}_0 \frac{\cos(ax^2)}{1+e^x+e^{-x}} dx$$

Let $y=e^x$

\begin{align*} I &= \int^{\infty}_1 \frac{\cos(a\ln^2(y))}{y^2+y+1} dy \\ &= \int^{1}_0 \frac{\cos(a\ln^2(y))}{y^2+y+1} dy \\ &= \int^{\infty}_0 \frac{\cos(a\ln^2(y))}{y^2+y+1} dy \end{align*}

I need help to evaluate integral

Delta
  • 1

1 Answers1

3

We write

$$ \frac1{1+2\cosh x}=\frac{e^{-x}}{1+e^{-x}+e^{-2x}}\,,\quad t=e^{-x}\in(0,1)\,, $$

so that

$$ \frac1{1+2\cosh x}=\frac{t}{1+t+t^2}\,. $$

Expanding as a power series in $t$ gives a repeating pattern. In fact one finds

$$ \frac{1}{1+t+t^2}=1 -t +0\cdot t^2 +t^3 - t^4 +0\cdot t^5 + \cdots, $$

so that

$$ \frac{1}{1+2\cosh x}=\sum_{n=0}^\infty c_n e^{-(n+1)x}, $$

where the coefficients $c_n$ are periodic of period 3: $c_{3m+1}=1,\;c_{3m+2}=-1,\;c_{3m+3}=0$. (This follows directly by solving the recurrence $c_n + c_{n-1}+c_{n-2}=0$ with $c_0=1,c_1=-1$, etc.) Hence

$$ \int_0^\infty \frac{\cos(ax^2)}{1+2\cosh x}\,dx =\sum_{n=0}^\infty c_n \int_0^\infty e^{-(n+1)x}\cos(a x^2)\,dx. $$

Each integral

$$ I(k)=\int_0^\infty e^{-k x}\cos(a x^2)\,dx,\qquad k>0, $$

can be evaluated by expanding $\cos(a x^2)$ in its Taylor series:

$$ \cos(a x^2)=\sum_{p=0}^\infty \frac{(-1)^p}{(2p)!}(a x^2)^{2p} =\sum_{p=0}^\infty \frac{(-1)^p a^{2p}}{(2p)!}x^{4p}. $$

Substituting and integrating termwise (justified by uniform convergence of the exponential series for $x\ge0$) gives

$$ I(k)=\sum_{p=0}^\infty \frac{(-1)^p a^{2p}}{(2p)!}\int_0^\infty x^{4p} e^{-k x}\,dx. $$

But by the gamma-function identity $\Gamma(n+1)=\int_0^\infty t^n e^{-t}dt$ we have $\int_0^\infty x^n e^{-k x}dx = n!/k^{\,n+1}$ for Re$(k)>0$. Hence

$$ \int_0^\infty x^{4p}e^{-k x}\,dx = \frac{(4p)!}{k^{4p+1}}. $$

Thus

$$ I(k)=\sum_{p=0}^\infty \frac{(-1)^p (4p)!}{(2p)!}\,\frac{a^{2p}}{k^{4p+1}}. $$

Returning to the original sum, with $k=n+1$, we get

$$ \int_0^\infty \frac{\cos(ax^2)}{1+2\cosh x}\,dx =\sum_{n=0}^\infty c_n I(n+1) =\sum_{n=0}^\infty c_n \sum_{p=0}^\infty \frac{(-1)^p (4p)!}{(2p)!}\frac{a^{2p}}{(n+1)^{4p+1}}. $$

Interchanging sums (again justified by uniform convergence for each fixed $a$) yields

$$ =\sum_{p=0}^\infty \frac{(-1)^p (4p)!}{(2p)!}\,a^{2p} \sum_{n=0}^\infty\frac{c_n}{(n+1)^{4p+1}}. $$

Observe that $c_n=a_{n+1}$ where $a_k$ is the periodic arithmetic function $a_{3m+1}=1,\;a_{3m+2}=-1,\;a_{3m}=0$. In other words, $a_k=\chi_3(k)$ is the non-principal Dirichlet character mod 3 (with $\chi_3(3m+1)=1,\;\chi_3(3m+2)=-1$). Therefore

$$ \sum_{n=0}^\infty \frac{c_n}{(n+1)^s} =\sum_{k=1}^\infty \frac{a_k}{k^s} =\sum_{k=1}^\infty \frac{\chi_3(k)}{k^s}, $$

which by definition is the Dirichlet $L$-series $L(s,\chi_3)$. (MathWorld defines $L(s,\chi)=\sum_{n=1}^\infty \chi(n)n^{-s}$.) Hence for each $p$ we have

$$ \sum_{n=0}^\infty \frac{c_n}{(n+1)^{4p+1}} =\sum_{k=1}^\infty \frac{\chi_3(k)}{k^{4p+1}} =L(4p+1,\chi_3). $$

Putting everything together gives the final result in series form:

$$ \boxed{\;\int_0^\infty \frac{\cos(ax^2)}{1+2\cosh x}\,dx =\sum_{p=0}^\infty (-1)^p\,\frac{(4p)!}{(2p)!}\,a^{2p}\;L(4p+1,\chi_3)\,.} $$

Here $\chi_3$ is the non-principal real character mod 3, so that $L(s,\chi_3)=\sum_{k\equiv1(3)}k^{-s}-\sum_{k\equiv2(3)}k^{-s}$. (For example, at $a=0$ the integral becomes $L(1,\chi_3)=\pi/(3\sqrt3)$, which agrees with direct evaluation.) This completes the derivation without recourse to contour methods.

Frank
  • 2,434
  • 3
  • 12