The value of the integral$$\int_0^{\infty} \left(\sqrt{1+x^{4}}-x^{2}\right)\ dx=\frac{\Gamma^{2}\left(\frac{1}{4}\right)}{6\sqrt{\pi}}$$
involves the Gamma function. I think that the generalised form $$ I_n=\int_0^{\infty}\left(\sqrt{1+x^{2 n}}-x^n\right) d x $$ could be expressed in terms of the Gamma function too for any natural number $n$ greater than $1$.
Now putting $x\mapsto \frac{1}{x}$ helps us to use integration by parts.
$$ \begin{aligned} I _n & =\int_0^{\infty}\left(\sqrt{1+\frac{1}{x^{2 n}}}-\frac{1}{x^n}\right) \frac{d x}{x^2} \\ & =\int_0^{\infty} \frac{\sqrt{x^{2 n}+1}-1}{x^{n+2}} d x \\ & =-\frac{1}{n+1} \int_0^{\infty}\left(\sqrt{x^{2 n}+1}-1\right) d\left(\frac{1}{x^{n+1}}\right) \\ & =\frac 1 {n+1} \int_0^{\infty} \frac{1}{x^{n+1}} \cdot \frac{2 n x^{2 n-1}}{2 \sqrt{x^{2 n}+1}} \\ & =\frac{n}{n+1} \underbrace{\int_0^{\infty} \frac{x^{n-2}}{\sqrt{x^{2 n}+1}} d x}_{J_n} \end{aligned} $$
Putting $ y=\frac 1{x^{2n}+1} $ converts the integral into a Beta function.
$$ \begin{aligned} J_n & =\frac{1}{2 n} \int_0^1 y^{\frac{1}{2}}\left(\frac{1}{y}-1\right)^{\frac{n-2}{2 n}}\left(\frac{1}{y}-1\right)^{\frac{1}{2 n}-1} \frac{d y}{y^2} \\ & =\frac{1}{2 n} B\left(\frac{1}{2 n},-\frac{1}{2 n}+\frac{1}{2}\right) \end{aligned} $$
Plugging $J_n$ back yields $$ \begin{aligned} I_n & =\frac{1}{2(n+1)} B\left(\frac{1}{2 n},-\frac{1}{2 n}+\frac{1}{2}\right) \\ & =\frac{1}{2(n+1)} \frac{\Gamma\left(\frac{1}{2 n}\right) \Gamma\left(-\frac{1}{2 n}+\frac{1}{2}\right)}{\Gamma\left(\frac{1}{2}\right)} \\ \end{aligned} $$ Now we can generalise it as $$\boxed{\int_0^{\infty}\left(\sqrt{1+x^{2 n}}-x^n\right) d x =\frac{1}{2(n+1) \sqrt{\pi}} \Gamma\left(\frac{1}{2 n}\right) \Gamma\left (\frac{1}{2} -\frac{1}{2 n}\right) }$$
For examples:
$$ \begin{aligned} & I_3=\frac{1}{8 \sqrt{\pi}} \Gamma\left(\frac{1}{6}\right) \Gamma\left(\frac{1}{3}\right) \\ & I_8=\frac{1}{18 \sqrt{\pi}} \Gamma\left(\frac{1}{16}\right) \Gamma\left(\frac{7}{16}\right) \end{aligned} $$
checked by WA.
Latest Edit
As I look back after submitting the post, I found that the proof of my generalisation doesn’t need that $n$ is natural number greater than $1$ and hence the generalisation is true for any real number $a>1$ i.e.
$$\boxed{\int_0^{\infty}\left(\sqrt{1+x^{2 a}}-x^a\right) d x =\frac{1}{2(a+1) \sqrt{\pi}} \Gamma\left(\frac{1}{2 a}\right) \Gamma\left (\frac{1}{2} -\frac{1}{2 a}\right) }$$
For example:
$$ \int_0^{\infty}\left(\sqrt{1+x^{2 e}}-x^e\right) d x=\frac{1}{2(e+1) \sqrt{\pi}} \Gamma\left(\frac{1}{2 e}\right) \Gamma\left(\frac{1}{2}-\frac{1}{2 e}\right) $$ checked by WA.
My Question:
Are there any other generalisation of $\int_0^{\infty}\left(\sqrt{1+x^{4}}-x^2\right) d x $?