Evaluate :$I=\int_0^{\frac{\pi}{2}} \ln^2(1+\sin(x)) dx $
Using WolframAlpha:$$I \approx 0.4162...$$
I tried to change variables $y=\tan(\frac{x}{2})$
\begin{aligned} I &= 2\int^1_0 \frac{\ln^2\left({\frac{(1+y)^2}{1+y^2}}\right)}{1+y^2} dy \\ &= 2(I_1+I_2+I_3) \end{aligned}
Where : \begin{aligned} I_1 &= 4\int^1_0 \frac{\ln^2(1+y)}{1+y^2} dy \\ I_2 &= \int^1_0\frac{\ln^2(1+y^2)}{1+y^2} dy \\ I_3 &= -4\int^1_0 \frac{\ln(1+y)\ln(1+y^2)}{1+y^2} dy \end{aligned}