Using $$\operatorname{Cl}_{2}(z)=\sum_{k=1}^\infty \frac{\sin (k z)}{k^2}$$
$$\int\limits^{2\pi}_{0} \frac{\operatorname{Cl}_{2}(z)}{z}\,dz=\int\limits^{2\pi}_{0}\sum_{k=1}^\infty \frac{\sin (k z)}{k^2z}\,dz$$
We can swap the summation and the integration
$$\int\frac{\sin (k z)}{k^2z}\,dz=\frac 1{k^2}\int\frac{\sin (t)}{t}\,dt=\frac 1{k^2}\text{Si}(t)=\frac 1{k^2}\text{Si}(kz)$$
$$\int_0^{2\pi}\frac{\sin (k z)}{k^2z}\,dz=\frac 1{k^2}\text{Si}(2k\pi)$$
$$\int\limits^{2\pi}_{0} \frac{\operatorname{Cl}_{2}(z)}{z}\,dz=\sum_{k=1}^\infty \frac{\text{Si}(2 k \pi )}{k^2}$$
The summation will be extremely slow since, if $a_k$ is the summand, for large $k$,
$$\frac {a_{k+1}}{a_k}=1-\frac{2}{k}+\frac{1+3 \pi ^2}{\pi ^2
k^2}+O\left(\frac{1}{k^3}\right)$$
Computing the partial sums
$$\left(
\begin{array}{cc}
p & \sum_{k=1}^p a_k \\
1000 & 2.397763 \\
2000 & 2.398548 \\
3000 & 2.398810 \\
4000 & 2.398941 \\
5000 & 2.399019 \\
6000 & 2.399072 \\
7000 & 2.399109 \\
8000 & 2.399137 \\
9000 & 2.399159 \\
10000 & 2.399176 \\
\end{array}
\right)$$
The number can be approximated using the simplest form of Euler-Maclaurin summation since we know that
$$\int\frac{\text{Si}(2 k \pi )}{k^2}\,dk=2 \pi \text{Ci}(2 k \pi )-\frac 1 k(\text{Si}(2 k \pi )+\sin (2 \pi k))$$ It would give,as an approximation,
$$\frac{341}{210} \text{Si}(2 \pi )-2 \pi \text{Ci}(2 \pi )-\frac{\pi \left(927-148 \pi ^2+10 \pi ^4\right)}{18900}=2.37136$$ which corresponds to a relative error of $1.2$%.
Edit
We could also write
$$\sum_{k=1}^\infty \frac{\text{Si}(2 k \pi )}{k^2}=\sum_{k=1}^n \frac{\text{Si}(2 k \pi )}{k^2}+\sum_{k=n+1}^\infty \frac{\text{Si}(2 k \pi )}{k^2}$$ and use the asymptotic
$$\frac{\text{Si}(2 k \pi )}{k^2}=\frac{\pi }{2 k^2}-\frac{1}{2 \pi k^3}+\frac{1}{4
\pi ^3 k^5}-\frac{3}{4 \pi ^5 k^7}+\frac{45}{8
\pi ^7 k^9}+O\left(\frac{1}{k^{11}}\right) \tag 1$$ and
$$\sum_{k=n+1}^\infty \frac 1{k^m}=\zeta (m,n+1)$$ where the rhs is the Hurwitz zeta function.
Using $n=1000$, this would give
$$2.39776349908777+0.00156993169250=2.39933343078027$$
while is the value obtained numerically for
$$\int_0^{2\pi} \Re\left(\log \left(1-e^{i z}\right) \log
(z)\right)\,dz=2.39933343078039$$
We could still do better using more terms in $(1)$.