Well, if you do not define the exponential function as its Taylor series, I assume you define it as below. In Real Analysis, it is often standard or convenient to define $\exp(x)$ as its Taylor Series. It would be helpful to know whether you're in a Calculus class or doing Real Analysis.
We want to compute the limit:
$$
\lim_{x \to 0} \frac{e^{2x} - 2x - 1}{x^2}
$$
We will use the limit definition of the exponential function:
$$
e^y := \lim_{n \to \infty} \left(1 + \frac{y}{n} \right)^n
$$
Applying this to $y = 2x$, define:
$$
f_n(x) = \left(1 + \frac{2x}{n} \right)^n \quad \text{so that} \quad e^{2x} = \lim_{n \to \infty} f_n(x)
$$
Our goal is to compute:
$$
\lim_{x \to 0} \frac{\lim_{n \to \infty} f_n(x) - 2x - 1}{x^2}
$$
Using the binomial theorem:
$$
f_n(x) = \sum_{k=0}^n \binom{n}{k} \left( \frac{2x}{n} \right)^k
$$
Let's look at the first few terms:
- $k = 0$: $ \binom{n}{0} \left(\frac{2x}{n}\right)^0 = 1 $
- $ k = 1 $: $ \binom{n}{1} \left(\frac{2x}{n}\right) = 2x$
- $ k = 2 $:
$$
\binom{n}{2} \left(\frac{2x}{n}\right)^2
= \frac{n(n-1)}{2} \cdot \frac{4x^2}{n^2}
= 2x^2 \left(1 - \frac{1}{n} \right)
$$
So we write:
$$
f_n(x) = 1 + 2x + 2x^2 \left(1 - \frac{1}{n} \right) + R_n(x)
$$
where
$$
R_n(x) := \sum_{k=3}^n \binom{n}{k} \left( \frac{2x}{n} \right)^k
$$
Now take the limit as $n \to \infty$:
$$
\lim_{n \to \infty} f_n(x) = 1 + 2x + 2x^2 + \lim_{n \to \infty} R_n(x)
$$
We now estimate $R_n(x)$. Since:
$$
|R_n(x)| \le \sum_{k=3}^n \binom{n}{k} \left( \frac{2|x|}{n} \right)^k
$$
and for fixed small $x$, all terms in this sum are $O(x^3)$, it follows that:
$$
R_n(x) = o(x^2)
$$
Hence:
$$
e^{2x} = 1 + 2x + 2x^2 + o(x^2)
$$
Then:
$$
e^{2x} - 2x - 1 = 2x^2 + o(x^2)
$$
and
$$
\frac{e^{2x} - 2x - 1}{x^2} = 2 + \frac{o(x^2)}{x^2}
$$
Taking the limit as $x \to 0$:
$$
\boxed{\lim_{x \to 0} \frac{e^{2x} - 2x - 1}{x^2} = 2}
$$
If you're not familiar with the Big-O-Notation, check out Wikipedia for a good explanation. Alternatively, further expand the binomial and omit the Big-O-Notation...