We group terms in the double sum by setting $n=r+s$. For each $n\geq2$, the pairs of positive integers $(r,s)$ satisfying $r+s=n$ are exactly those with $r=1$ to $n−1$, and $s=n−r$. With this we rewrite the double sum as a single sum over $n$ with an inner sum over $r$.
$$
\sum_{r=1}^\infty \sum_{s=1}^\infty \frac{1}{rs(r+s)}
= \sum_{n=2}^\infty \sum_{r=1}^{n-1} \frac{1}{r(n - r)n}
$$
We can then manipulate the expression
$$
\frac{1}{r(n - r)} = \frac{1}{n} \left( \frac{1}{r} + \frac{1}{n - r} \right)
$$
So we get
$$
\sum_{r=1}^{n-1} \frac{1}{r(n - r)} = \frac{1}{n} \sum_{r=1}^{n-1} \left( \frac{1}{r} + \frac{1}{n - r} \right)
= \frac{2}{n} \sum_{r=1}^{n-1} \frac{1}{r} = \frac{2H_{n-1}}{n}
$$
Therefore we can write that
$$
\sum_{r=1}^\infty \sum_{s=1}^\infty \frac{1}{rs(r+s)}
= \sum_{n=2}^\infty \frac{1}{n} \cdot \frac{2H_{n-1}}{n}
= 2 \sum_{n=2}^\infty \frac{H_{n-1}}{n^2}
$$
We now shift the index by letting $m = n - 1$, so:
$$
2 \sum_{n=2}^\infty \frac{H_{n-1}}{n^2} = 2 \sum_{m=1}^\infty \frac{H_m}{(m+1)^2}
$$
It is known(1.12, page 3) that
$$
\sum_{m=1}^\infty \frac{H_m}{(m+1)^2} = \zeta(3)
$$
Hence, we can conclude that
$$
\sum_{r=1}^{\infty} \sum_{s=1}^{\infty} \frac{1}{rs(r+s)} = 2\zeta(3)
$$