I do not know what do you mean by "equivalent", but you can generalize dual numbers to multiple dimensions in various ways, either commutative or not.
Here are some links to lists of low-dimensional associative algebras:
https://arxiv.org/pdf/0910.0932
https://arxiv.org/pdf/1606.03119
Classification of 4 dimensional real associative unital algebra
For instance,
$\mathbb{R}[x]/(x^4) \simeq \begin{bmatrix}a&b&c&d\\0&a&b&c\\0&0&a&b\\0&0&0&a\end{bmatrix}$
$\mathbb{R}[x, y]/(x^2, y^2)\simeq \begin{bmatrix}a&b&c&d\\0&a&0&c\\0&0&a&b\\0&0&0&a\end{bmatrix}$,
$\mathbb{R}[x]/x^2 \times \mathbb{R}[y]/y^2\simeq \begin{bmatrix}a&b&0&0\\0&a&0&0\\0&0&c&d\\0&0&0&c\end{bmatrix}$ (direct product of dual numbers)
$\mathbb{R}\langle x,y\rangle /(x^2,y^2,xy+yx)\simeq \begin{bmatrix}a&b&c&d\\0&a&0&-c\\0&0&a&b\\0&0&0&a\end{bmatrix}$ (Grassmann numbers)
$\mathbb{R}[x, y, z]/(x^2, xy, y^2, yz, z^2, zx)\simeq \begin{bmatrix}a&0&b&d\\0&a&c&b\\0&0&a&0\\0&0&0&a\end{bmatrix}$,
etc. All of these can be considered generalizations of dual numbers.