Starting the computation we get for the third one
$$P(v) =
\sum_{k=0}^n {2n\choose k} \frac{2n-2k+1}{2n-k+1} (v-1)^k
\\ = \sum_{k=0}^n {2n\choose k} (v-1)^k
- \sum_{k=1}^n {2n\choose k} \frac{k}{2n-k+1} (v-1)^k
\\ = \sum_{k=0}^n {2n\choose k} (v-1)^k
- \sum_{k=1}^n {2n\choose k-1} (v-1)^k.$$
We now examine the coefficient on $[v^q]$ where $0\le
q\le n$ by construction. We get for the first piece
$$[v^q] [z^n] \frac{1}{1-z} (1+z(v-1))^{2n}
= [v^q] [z^n] \frac{1}{1-z} (1-z+vz)^{2n}
\\ = [z^n] {2n\choose q} z^q (1-z)^{2n-1-q}
= {2n\choose q} (-1)^{n-q} {2n-1-q\choose n-q}.$$
We have for the second piece
$$[v^q] (v-1) [z^{n-1}] \frac{1}{1-z} (1+z(v-1))^{2n}
= [v^q] (v-1) [z^{n-1}] \frac{1}{1-z} (1-z+vz)^{2n}
\\ = [z^{n-1}] {2n\choose q-1} z^{q-1} (1-z)^{2n-(q-1)-1}
- [z^{n-1}] {2n\choose q} z^q (1-z)^{2n-q-1}
\\ = {2n\choose q-1} (-1)^{n-q} {2n-q\choose n-q}
- {2n\choose q} (-1)^{n-1-q} {2n-q-1\choose n-1-q}.$$
We have shown that
$$\bbox[5px,border:2px solid #00A000]{
\begin{align}
[v^q] P(v) = (-1)^{n-q}
\left[ {2n\choose q} {2n-1-q\choose n-q}
- {2n\choose q-1} {2n-q\choose n-q}
\\ - {2n\choose q} {2n-1-q\choose n-1-q} \right].
\end{align}}$$
We continue with
$$Q(v) =
v \sum_{k=0}^{n-1} {2n\choose k} \frac{n-k}{n} (v-1)^k.$$
and do another coefficient extraction on two pieces, the first is (here we may take $q\ge 1$ by inspection as
$[v^0] P(v) = 0$ same as $Q(v)$)
$$[v^{q-1}] [z^{n-1}] \frac{1}{1-z} (1+z(v-1))^{2n}
= [v^{q-1}] [z^{n-1}] \frac{1}{1-z} (1-z+vz)^{2n}
\\ = [z^{n-1}] {2n\choose q-1} z^{q-1} (1-z)^{2n-(q-1)-1}
= {2n\choose q-1} (-1)^{n-q} {2n-q\choose n-q}.$$
The second is
$$[v^q] 2v \sum_{k=1}^{n-1} {2n-1\choose k-1} (v-1)^k
= 2[v^{q-1}] (v-1) \sum_{k=0}^{n-2} {2n-1\choose k} (v-1)^k
\\ = 2[v^{q-1}] (v-1) [z^{n-2}] \frac{1}{1-z} (1+z(v-1))^{2n-1}
\\ = 2[v^{q-1}] (v-1) [z^{n-2}] \frac{1}{1-z} (1-z+vz)^{2n-1}
\\ = 2 {2n-1\choose q-2} [z^{n-2}] z^{q-2} (1-z)^{2n-1-(q-2)-1}
- 2 {2n-1\choose q-1} [z^{n-2}] z^{q-1} (1-z)^{2n-1-(q-1)-1}
\\ = 2 {2n-1\choose q-2} (-1)^{n-q} {2n-q\choose n-q}
- 2 {2n-1\choose q-1} (-1)^{n-q-1} {2n-1-q\choose n-q-1}.$$
We have shown that
$$\bbox[5px,border:2px solid #00A000]{
\begin{align} [v^q] Q(v) = (-1)^{n-q}
\left[ {2n\choose q-1} {2n-q\choose n-q}
- 2 {2n-1\choose q-2} {2n-q\choose n-q}
\\ - 2 {2n-1\choose q-1} {2n-1-q\choose n-1-q} \right]
\end{align}.}$$
Now we just need to verify that these are the same. Dividing by
$(-1)^{n-q} {2n-q\choose n-q}$ we get from $P(v)$
$${2n\choose q} \frac{n}{2n-q} - {2n\choose q-1}
- {2n\choose q} \frac{n-q}{2n-q} $$
and from $Q(v)$
$${2n\choose q-1} - 2{2n-1\choose q-2}
- 2 {2n-1\choose q-1} \frac{n-q}{2n-q}.$$
Next divide by ${2n\choose q}$ for the new pair
$$\frac{n}{2n-q} - \frac{q}{2n+1-q} - \frac{n-q}{2n-q}$$
and
$$\frac{q}{2n+1-q} - 2 \frac{q(q-1)}{2n(2n+1-q)}
- 2 \frac{q}{2n} \frac{n-q}{2n-q}.$$
The rest is certainly feasible by hand or may be
entrusted to a computer algebra system and we may
conclude. With the above computation it is hoped that
something simpler might appear. A single lemma might
encapsulate the parts that repeat.