Question:
How to evaluate $$ \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1 + x}{1 - x}} \log\left(2x^2 - 2x + 1\right) \, dx \approx -3.029597965685223 $$
Attempt:
$$ I \;=\;\int_{-1}^{1}\frac{1}{x}\,\sqrt{\frac{1+x}{1-x}}\;\ln\bigl(2x^2-2x+1\bigr)\,dx $$
Change of variable Set
$$ x = 1 - 2t,\qquad t\in[0,1], $$
so that $dx=-2\,dt$ and
$$ \frac{1+x}{1-x} = \frac{2-2t}{2t} = \frac{1-t}{t}, \quad 2x^2-2x+1 = 8t^2-4t+1. $$
One finds
$$ I = 2\int_{0}^{1}\frac{\,t^{-1/2}(1-t)^{1/2}\,}{1-2t} \,\ln\!\bigl(8t^2-4t+1\bigr)\,dt. $$ Next set $t=\sin^2\theta$, $\theta\in[0,\frac\pi2]$. Then
$$ dt = 2\sin\theta\cos\theta\,d\theta, \quad t^{-1/2}(1-t)^{1/2}\,dt = 2\cos^2\theta\,d\theta, \quad 1-2t = \cos2\theta. $$
Hence the integral becomes
$$ I =4\int_{0}^{\frac\pi2}\frac{\cos^2\theta}{\cos2\theta} \;\ln\!\bigl(2\cos^2(2\theta)-2\cos(2\theta)+1\bigr)\,d\theta. $$
Writing $\displaystyle \frac{\cos^2\theta}{\cos2\theta} =\frac12\Bigl(1+\frac1{\cos2\theta}\Bigr)$ splits $I=2J_1+2J_2$, where
$$ \begin{aligned} J_1 &= \int_{0}^{\frac\pi2} \ln\!\bigl(2\cos^2(2\theta)-2\cos2\theta+1\bigr)\,d\theta,\\ J_2 &= \int_{0}^{\frac\pi2} \frac{\ln\!\bigl(2\cos^2(2\theta)-2\cos2\theta+1\bigr)}{\cos2\theta}\,d\theta. \end{aligned} $$
I’m finding it difficult to progress any further. Is it possible to formulate any general type of generalization?
This integral is a variation of the famous integral discussed here:
If we remove the numerator and move the denominator inside the logarithm, the integral appears.
Eight downvotes for no reason great.
The closed-form expression of the integral, given by Integreek, is  $$\pi \left(\coth^{-1} \sqrt{\phi} - 2 \cot^{-1} \sqrt{\phi} - \ln 2\right).$$
Edit 2: can someone explain why this question was closed again? Initially, other users said it lacked context, so I added the necessary context. But it’s still getting closed.