2

Question:

How to evaluate $$ \int_{-1}^{1} \frac{1}{x} \sqrt{\frac{1 + x}{1 - x}} \log\left(2x^2 - 2x + 1\right) \, dx \approx -3.029597965685223 $$

Attempt:

$$ I \;=\;\int_{-1}^{1}\frac{1}{x}\,\sqrt{\frac{1+x}{1-x}}\;\ln\bigl(2x^2-2x+1\bigr)\,dx $$

Change of variable Set

$$ x = 1 - 2t,\qquad t\in[0,1], $$

so that $dx=-2\,dt$ and

$$ \frac{1+x}{1-x} = \frac{2-2t}{2t} = \frac{1-t}{t}, \quad 2x^2-2x+1 = 8t^2-4t+1. $$

One finds

$$ I = 2\int_{0}^{1}\frac{\,t^{-1/2}(1-t)^{1/2}\,}{1-2t} \,\ln\!\bigl(8t^2-4t+1\bigr)\,dt. $$ Next set $t=\sin^2\theta$, $\theta\in[0,\frac\pi2]$. Then

$$ dt = 2\sin\theta\cos\theta\,d\theta, \quad t^{-1/2}(1-t)^{1/2}\,dt = 2\cos^2\theta\,d\theta, \quad 1-2t = \cos2\theta. $$

Hence the integral becomes

$$ I =4\int_{0}^{\frac\pi2}\frac{\cos^2\theta}{\cos2\theta} \;\ln\!\bigl(2\cos^2(2\theta)-2\cos(2\theta)+1\bigr)\,d\theta. $$

Writing $\displaystyle \frac{\cos^2\theta}{\cos2\theta} =\frac12\Bigl(1+\frac1{\cos2\theta}\Bigr)$ splits $I=2J_1+2J_2$, where

$$ \begin{aligned} J_1 &= \int_{0}^{\frac\pi2} \ln\!\bigl(2\cos^2(2\theta)-2\cos2\theta+1\bigr)\,d\theta,\\ J_2 &= \int_{0}^{\frac\pi2} \frac{\ln\!\bigl(2\cos^2(2\theta)-2\cos2\theta+1\bigr)}{\cos2\theta}\,d\theta. \end{aligned} $$

I’m finding it difficult to progress any further. Is it possible to formulate any general type of generalization?

This integral is a variation of the famous integral discussed here:

Integral $\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2\,x^2+2\,x+1}{2\,x^2-2\,x+1}\right) \mathrm dx$

If we remove the numerator and move the denominator inside the logarithm, the integral appears.

Eight downvotes for no reason great.

The closed-form expression of the integral, given by Integreek, is  $$\pi \left(\coth^{-1} \sqrt{\phi} - 2 \cot^{-1} \sqrt{\phi} - \ln 2\right).$$

Edit 2: can someone explain why this question was closed again? Initially, other users said it lacked context, so I added the necessary context. But it’s still getting closed.

  • 5
    Do you have any reason to believe the integral has a simple closed form solution? Where did you encounter such an integral? – Amogh May 25 '25 at 08:06
  • 2
    Did you just modify this "site classic" or did you actually run into this integral? – Jyrki Lahtonen May 25 '25 at 08:43
  • 3
    This answer - https://math.stackexchange.com/a/5034558/1157207, should give a good start to your question – Amrut Ayan May 25 '25 at 09:59
  • 3
    @JyrkiLahtonen it is actually a second part of that question, “I am also interested in cases when only numerator or only denominator is present under the logarithm.”. – Integreek May 25 '25 at 10:46
  • 2
    I’m shocked that this question received 8 downvotes and 1 close vote without any explanation – Martin.s May 25 '25 at 11:06
  • 3
    You have a lot of haters @Martin.s but karma is everywhere. I have upvoted your question because its interesting!! Best all. – User-Refolio May 25 '25 at 11:12
  • 4
    I guess your downvotes are signs of disproval of the antic of trying to ride on the fame of that question. Why would you expect upvotes if you haven't tried the full gamut of techniques of that mother thread. For what it's worth, that question is also largely unmotivated. – Jyrki Lahtonen May 25 '25 at 11:25
  • 1
    @JyrkiLahtonen Taking a part of a very famous question to solve is, to me, a great motivation –  May 25 '25 at 12:28
  • 2
    @JyrkiLahtonen Agree. – OnTheWay May 25 '25 at 13:22

3 Answers3

8

\begin{align}\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln(2x^2-2x+1)\mathrm dx&=\int_0^1\frac1x\left(\sqrt{\frac{1+x}{1-x}}\ln(2x^2-2x+1)-\sqrt{\frac{1-x}{1+x}}\ln(2x^2+2x+1)\right)\mathrm dx\\&=\underbrace{\int_0^1\frac{\ln(4x^4+1)}{\sqrt{1-x^2}}\mathrm dx}_{I_1}-\underbrace{\int_0^1\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\frac{\mathrm dx}{x\sqrt{1-x^2}}}_{I_2}\end{align}

$I_2$ is actually half of the famous integral $\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\mathrm dx:$

\begin{align}\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\mathrm dx&=\int_0^1\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\left(\sqrt{\frac{1+x}{1-x}}+\sqrt{\frac{1-x}{1+x}}\right)\frac{\mathrm dx}x\\&=2\int_0^1\ln\left(\frac{2x^2+2x+1}{2x^2-2x+1}\right)\frac{\mathrm dx}{x\sqrt{1-x^2}}\\\implies I_2&=2\pi\cot^{-1}\sqrt\phi\end{align}

And $I_1$ can be found by using the result

$$\int_0^{\pi/2}\ln(\sin^2x+a)\mathrm dx=\pi(\sinh^{-1}\sqrt a-\ln2)$$

\begin{align}\frac{\mathrm d}{\mathrm da}\left(\int_0^{\pi/2}\ln(\sin^2x+a)\mathrm dx\right)&=\int_0^{\pi/2}\frac{\sec^2x~\mathrm dx}{(a+1)\tan^2x+a}\\&=\frac{\pi}{2\sqrt a\sqrt{a+1}}\\\implies \int_0^{\pi/2}\ln(\sin^2x+a)\mathrm dx&=\pi\int_0^a\frac{\mathrm d}{\mathrm dv}\left(\sqrt v\right)\frac1{\sqrt{\left(\sqrt v\right)^2+1}}\mathrm dv\\&=\pi\left(\sinh^{-1}\sqrt a-\ln2\right)\end{align}

$$I_1=\pi\left(-\ln2+\sinh^{-1}\left(\frac{1+i}2\right)+\sinh^{-1}\left(\frac{1-i}2\right)\right)$$

Using $\sinh^{-1}x+\sinh^{-1}y=\sinh^{-1}\left(x\sqrt{y^2+1}+y\sqrt{x^2+1}\right)$ and on simplifying using the identities $\phi^{\pm3}=\sqrt5\pm2,\phi^2=\frac{3+\sqrt5}2,\phi^2+1=\phi$, we have

$$I_1=\pi\left(\coth^{-1}\sqrt\phi-\ln2\right)$$

Hence, $$\boxed{\begin{align}\int_{-1}^1\frac1x\sqrt{\frac{1+x}{1-x}}\ln(2x^2-2x+1)\mathrm dx&=\pi\left(\coth^{-1}\sqrt\phi-2\cot^{-1}\sqrt\phi-\ln2\right)\end{align}}$$

Integreek
  • 8,530
2

I think that it could be "easier" to do $$\sqrt{\frac{1+x}{1-x}}=t \quad \implies \quad x=\frac{t^2-1}{t^2+1}\quad \implies \quad dx=\frac{4 t}{\left(t^2+1\right)^2}\,dt$$ which gives $$I=4\int_0^\infty \frac{t^2}{t^4-1} \log \left(\frac{t^4-2 t^2+5}{\left(t^2+1\right)^2}\right)\,dt$$

Then, decompose the logarithm using $$t^4-2t^2+5=(t^2-(1-2 i))\,(t^2-(1+2 i))$$ $$(t^2+1)^2=(t-i)^2\,(t+i)^2$$ as well as $$\frac{t^2}{t^4-1}=-\frac{i}{4 (t-i)}+\frac{i}{4 (t+i)}-\frac{1}{4 (t+1)}+\frac{1}{4 (t-1)}$$

The antiderivatives are not so difficult. The problm is that the result for the definite integral is a monster (a bunch of logarithms and polylogarithms of complex numbers).

Have look here for the antiderivative. If the link is broken, give Wolfram Alpha the following

Integrate[(4*t^2*Log[(5 - 2*t^2 + t^4)/(1 + t^2)^2])/ (-1 + t^4),t]

-3

From the "King's Rule" for definite integration, $$\int_{a}^{b}f(x)dx=\int_{a}^{b}f(a+b-x)dx$$ we can replace $\cos(2\theta)$ with $\cos(2(\pi/2-\theta))=-\cos(2\theta)$, $$J_1=\int_{0}^{\frac\pi2}\ln(2\cos^2(2\theta)-2\cos(2\theta)+1)d\theta=\int_{0}^{\frac\pi2}\ln(2\cos^2(2\theta)+2\cos(2\theta)+1)d\theta$$ and then add both forms of $J_1$, $$J_1+J_1=\int_{0}^{\frac\pi2}(\ln(2\cos^2(2\theta)-2\cos(2\theta)+1)+\ln(2\cos^2(2\theta)+2\cos(2\theta)+1))d\theta$$ $$2J_1=\int_{0}^{\frac\pi2}\ln((2\cos^2(2\theta)-2\cos(2\theta)+1)(2\cos^2(2\theta)+2\cos(2\theta)+1))d\theta$$ $$J_1=\frac{1}{2}\int_{0}^{\frac\pi2}\ln(4\cos^4(2\theta)+1)d\theta$$ As far as I know there isn't a simple closed form solution to this (there might be a complicated one).

Amogh
  • 1,718