I understand that a subset $Y$ of a metric space $(X,d)$ is dense in $X$ if $\forall x\in X$, $\forall r\gt0$, $\exists y\in Y$ such that $d(x,y)\lt r$.
I'm struggling to understand how to prove that the Irrationals $\mathbb{R}-\mathbb{Q}$ is dense in $\mathbb{R}$.
If $x\in\mathbb{R}-\mathbb{Q}$, then just take $y=x$. Then $d(x,y)=0\lt r$.
But if $x\in\mathbb{Q}$, how do we choose a $y$ that $\in\mathbb{R}-\mathbb{Q}$ and is guaranteed to have $d(x,y)\lt r?$