The question came into my mind that how far we can go with the power $n $ in $\int_0^{\infty}\left(\frac{x}{e^{x^2}+e^{-x^2}}\right)^n \mathrm d x $ after I had found the exact values for $n=1$ and $n=2$, say
$$I_1= \frac{\pi}{8},$$ $$I_2= \frac{\sqrt{\pi}-\sqrt{2 \pi}}{8 \sqrt{2}} \zeta\left(\frac{1}{2}\right) $$ Proof: $$ \begin{aligned} I_1= & \int_0^{\infty} \frac{x}{e^{x^2}+e^{-x^2}} \textrm{ d} x \\ = & \frac{1}{2} \int_0^{\infty} \frac{1}{e^x+e^{-x}}\textrm{ d}x, \text { where } x^2 \mapsto x \\ =&\frac{1}{4} \int_0^{\infty}\frac{ 1}{\operatorname{cosh }x} \textrm{ d} x \\ =&\frac{1}{4} \int_0^{\infty} \frac{\operatorname{\cosh} x}{1+\sinh ^2 x} \textrm{ d} x \\ =&\frac{1}{4}\left[\tan ^{-1}(\sinh x)\right]_0^{\infty} \\ =&\frac{\pi}{8} \end{aligned} $$
Using the expansion for $|x|<1$, $$ \frac{1}{(1+x)^2}=\sum_{n=1}^{\infty}(-1)^{n-1} n x^{n-1}, $$ we have $$ \begin{aligned} I_2=& \int_0^{\infty}\left(\frac{x}{e^{x^2}+e^{-x^2}}\right)^2 \textrm{d}x \\ = & \frac{1}{2} \int_0^{\infty} \frac{\sqrt{x}}{\left(e^x+e^{-x}\right)^2} \textrm{d} x, \text { via } x^2 \rightarrow x\\ = & \frac{1}{2} \int_0^{\infty} \frac{e^{-2 x} \sqrt{x}}{\left(1+e^{-2 x}\right)^2} \textrm{d}x \\ = & \frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n-1} n \int_0^{\infty} x^{\frac{1}{2}} e^{-2 n x} \textrm{d}x \end{aligned} $$ Utilising the formula: $\int_0^{\infty} t^{z-1} e^{-s t} d t=\frac{\Gamma(z)}{s^z}$ yields $$ \begin{aligned} I_2 & = \frac{1}{2} \sum_{n=1}^{\infty}\left((-1)^{n-1} n \cdot \frac{\Gamma\left(\frac{3}{2}\right)}{(2 n)^{\frac{3}{2}}}\right)\\ & =\frac{1}{4 \sqrt{2}} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{\sqrt n} \\ & =\frac{\pi}{8 \sqrt{2}}\left(\sum_{n=1}^{\infty} \frac{1}{\sqrt n}-2 \sum_{n=1}^\infty \frac{1}{\sqrt{2 n}}\right) \\ & =\frac{\sqrt{\pi}-\sqrt{2 \pi}}{8 \sqrt{2}} \zeta\left(\frac{1}{2}\right) \end{aligned} $$
Similarly, using the expansion for $|x|<1$ : $\frac{1}{(1+x)^3}=\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n-1}(n+1) n x^{n-1}$ yields $$ \begin{aligned} I_3 & =\int_0^{\infty}\left(\frac{x}{e^{x^2}+e^{-x^2}}\right)^3 \textrm{d} x \\ & =\frac{1}{2} \int_0^{\infty} \frac{x}{\left(e^x+e^{-x}\right)^3} \textrm{d} x, \text { via } x^2 \rightarrow x\\ & =\frac{1}{2} \int_0^{\infty} \frac{e^{-3 x} x}{\left(1+e^{-2 x}\right)^3} \textrm{d} x \\ & =\frac{1}{2} \sum_{n=1}^{\infty}(-1)^{n-1}(n+1) n \int_0^{\infty} x e^{-(2 n+1) x} \textrm{d} x \\ & =\frac{1}{2} \sum_{n=1}^{\infty}\left((-1)^{n-1}(n+1) n \cdot\frac{\Gamma(2)}{(2 n+1)^2}\right) \\ & =\frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n+1) n}{(2 n+1)^2} \end{aligned} $$ which is divergent and contradictory to the answer $0.0259978$ found in WA.
Could you help me by giving opinions or an alternative? Your help is highly appreciated.