Evaluate the limit : $$\lim_{x\to 0^+} \frac{e^{-1/{x^2}}+2x}{e^{3x}\sin x}$$ The answer given is 2.
My Attempt:
As usual if we try to apply L'Hopital Rule $$\displaystyle\lim_{x\to 0^+} \frac{e^{-1/{x^2}}\left(\dfrac{2}{x^3}\right)+2}{3e^{3x}\sin x+e^{3x}\cos x}$$ But now it is no longer of the form $\frac{0}{0}$
So we would need to evaluate this separately: $\lim_{x\to 0^+}e^{-1/{x^2}}\left(\dfrac{1}{x^3}\right)$
Persistent use of the L-H rule doesn't seem to be giving any value