Proving something for all natural numbers by induction means proving it for $n = 1$ and then proving it for $n = k + 1$ assuming it is true for $1 \le n \le k$. To do the first step, show
$$\cos\left(\frac{x}{2}\right) = \frac{\sin(x)}{2 \sin (\frac{x}{2})}.$$
This can be done using the trig half-angle formulas (or alternatively, see that $2\sin(\frac{x}{2}) = \frac{\sin(x)}{\cos(\frac{x}{2})}$ by the double angle formula for $\sin$). For the second step, you must show that
\begin{align*}
\cos(\dfrac{x}{2})\cos(\dfrac{x}{4}) \cdots \cos(\dfrac{x}{2^{n}}) = \dfrac{\sin x}{2^{n}\sin(\tfrac{x}{2^{n}})} \implies \\\cos(\dfrac{x}{2})\cos(\dfrac{x}{4}) \cdots \cos(\dfrac{x}{2^{n + 1}}) = \dfrac{\sin x}{2^{n + 1}\sin(\tfrac{x}{2^{n + 1}})}
\end{align*}
For this, note that given the antedecent, the consequent resolves to
$$\frac{\sin(x)}{2^n\sin(\frac{x}{2^n})} \cdot \cos\left(\dfrac{x}{2^{n + 1}}\right) = \dfrac{\sin x}{2^{n + 1}\sin(\tfrac{x}{2^{n + 1}})}$$
which again can be proven using half angle formulas, or note that since
$$2\cos\left(\dfrac{x}{2^{n + 1}}\right)\sin\left(\dfrac{x}{2^{n + 1}}\right) = \sin\left(\dfrac{x}{2^{n}}\right)$$
by the double angle formula for sine, we see that
$$\cos\left(\dfrac{x}{2^{n + 1}}\right) = \frac{\sin\left(\dfrac{x}{2^{n}}\right)}{2 \sin\left(\dfrac{x}{2^{n + 1}}\right)},$$
and making this substitution in the relevant equation proves the necessary statement.