For all $0<\alpha<\frac{\pi}{6}$
Prove that $\frac{\sin(\alpha)}{\alpha}>\frac{3}{\pi}$
MY ATTEMPT :
Since $$\frac{1}{\cos\alpha}>\frac{\sin\alpha}{\alpha}>\cos\alpha$$
Therefore, $$\frac{\sin\alpha}{\alpha}>\cos\alpha$$
Since $\cos\alpha$ decreases in $0<\alpha<\frac{\pi}{6}$
we can deduce that $$\frac{\sin\alpha}{\alpha}>\frac{\sqrt3}{2}$$
But $\frac{\sqrt3}{2}<\frac{3}{\pi}$
So the minimum is not $\frac{3}{\pi}$
Any methods to prove