You commented
the first set of solutions are constructible numbers, needing only square roots of square roots.
Since $z$ can be any number, I think the first set of solutions includes the solutions whose $z$ is not a constructible number.
In your example where $(a,b)=(1,-10)$, I noticed that $$(x,y,z)=(-2\cos(2\pi/7),-2\cos(4\pi/7),-2\cos(6\pi/7))$$
is included in the first set of solutions.
(A proof is written later.)
I think the first method gives the complete solution.
Let $A:=a-z,B:=-r-2z$.
$$\begin{align}&\begin{cases}x+y+z=a
\\x^3+y^3+z^3+xyz=x^4+y^4+z^4+b\end{cases}
\\\\&\iff\begin{cases}y=A-x
\\x^3+(A-x)^3+z^3+x(A-x)z
\\\qquad=x^4+(A-x)^4+z^4+b\end{cases}
\\\\&\iff\begin{cases}y=A-x
\\((2x-A)^2-B)^2=\beta\end{cases}
\\\\&\iff\begin{cases}y=A-x
\\x=\frac{A\pm\sqrt{B\pm\sqrt{\beta}}}{2}\end{cases}
\\\\&\iff (x,y)=\begin{cases}(\frac{A+\sqrt{B+\sqrt{\beta}}}{2},\frac{A-\sqrt{B+\sqrt{\beta}}}{2})
\\(\frac{A+\sqrt{B-\sqrt{\beta}}}{2},\frac{A-\sqrt{B-\sqrt{\beta}}}{2})
\\(\frac{A-\sqrt{B+\sqrt{\beta}}}{2},\frac{A+\sqrt{B+\sqrt{\beta}}}{2})
\\(\frac{A-\sqrt{B-\sqrt{\beta}}}{2},\frac{A+\sqrt{B-\sqrt{\beta}}}{2})\end{cases}\end{align}$$
Also, I think the second method gives the complete solution.
$$\begin{align}&\begin{cases}x+y+z=a
\\x^3+y^3+z^3+xyz=k
\\x^4+y^4+z^4+b=k\end{cases}
\\\\&\iff\begin{cases}x+y+z=a
\\a^3-3a(xy+yz+zx)+4xyz=k
\\a^4-4a^2(xy+yz+zx)
\\\qquad+2(xy+yz+zx)^2+4axyz+b=k\end{cases}
\\\\&\iff(x+y+z,xy+yz+zx,xyz)=\begin{cases}(a,\frac{a^2+\sqrt{a^4-8ak-8b+8k}}{4},\frac{4k-a^3+ 3a\sqrt{a^4-8ak-8b+8k}}{16})
\\(a,\frac{a^2-\sqrt{a^4-8ak-8b+8k}}{4},\frac{4k-a^3- 3a\sqrt{a^4-8ak-8b+8k}}{16})\end{cases}\end{align}$$
In the following, let us consider the case where $(a,b)=(1,-10)$.
Let $$p:=-2\cos(2\pi/7),q:=-2\cos(4\pi/7),r:=-2\cos(6\pi/7)$$
I think $(x,y,z)=(p,q,r)$ is included in the first set of solutions.
Let
$$f_+(z):= \frac{1-z+\sqrt{-3z^2+2z+9}}2$$
$$f_-(z):= \frac{1-z-\sqrt{-3z^2+2z+9}}2$$
Then, we can prove that
$$f_-(r)=p,f_+(r)=q$$
Proof :
We have
$$(2p-1+r)^2=-3r^2+2r+9\tag1$$
since $(1)$ is equivalent to
$$\begin{align}&4p^2+1+r^2-4p-2r+4pr=-3r^2+2r+9
\\&\iff 4(p^2+r^2)-4(p+r)+4pr-8=0
\\&\iff 4(5-q^2)-4(1-q)-\frac{4}{q}-8=0
\\&\iff q^3-q^2-2q+1=0\end{align}$$
which is true.
From $(1)$ with $2p-1+r\lt 0$ and $2q-1+r\gt 0$, we get
$$\begin{align}2p-1+r&=-\sqrt{-3r^2+2r+9}
\\2q-1+r&=\sqrt{-3r^2+2r+9}\end{align}$$
so we finally obtain
$$f_-(r)=\frac{1-r+(2p-1+r)}{2}=p,$$
$$f_+(r)=\frac{1-r+(2q-1+r)}{2}=q.\ \square$$
(The first set of solutions)
Let $g_{\pm}(\zeta):=\sqrt{-3\zeta^2+2\zeta\pm 9}$.
$$(x,y,z)=\bigg(\frac{1-\zeta+g_+(\zeta)}{2},\frac{1-\zeta-g_+(\zeta)}{2},\zeta\bigg),$$
$$\bigg(\frac{1-\zeta+g_-(\zeta)}{2},\frac{1-\zeta-g_-(\zeta)}{2},\zeta\bigg),$$
$$\bigg(\frac{1-\zeta-g_+(\zeta)}{2},\frac{1-\zeta+g_+(\zeta)}{2},\zeta\bigg),$$
$$\bigg(\frac{1-\zeta-g_-(\zeta)}{2},\frac{1-\zeta+g_-(\zeta)}{2},\zeta\bigg)$$
(The second set of solutions)
$x,y,z$ are the roots of the cubic equation
$$w^3-w^2+\frac{1\mp 9}{4}w-\frac{4k-1\mp 27}{16}=0$$
Now, let us show that every solution in the first set is included in the second set.
Proof :
For $$(x,y,z)=\bigg(\frac{1-\zeta+g_+(\zeta)}{2},\frac{1-\zeta-g_+(\zeta)}{2},\zeta\bigg),\bigg(\frac{1-\zeta-g_+(\zeta)}{2},\frac{1-\zeta+g_+(\zeta)}{2},\zeta\bigg)$$
we have
$$\begin{cases}x+y+z=1
\\xy+yz+zx=-2
\\xyz=\zeta^3 - \zeta^2 - 2\zeta\end{cases}$$
So, $x,y,z$ are the roots of the cubic equation
$$w^3-w^2+\frac{1-9}{4}w-\frac{4k-1-27}{16}=0$$
where $k=4\zeta^3 - 4\zeta^2 - 8\zeta + 7$.
For $$(x,y,z)=\bigg(\frac{1-\zeta+g_-(\zeta)}{2},\frac{1-\zeta-g_-(\zeta)}{2},\zeta\bigg),\bigg(\frac{1-\zeta-g_-(\zeta)}{2},\frac{1-\zeta+g_-(\zeta)}{2},\zeta\bigg)$$
we have
$$\begin{cases}x+y+z=1
\\xy+yz+zx=\frac 52
\\xyz=\zeta^3-\zeta^2+\frac 52\zeta\end{cases}$$
So, $x,y,z$ are the roots of the cubic equation
$$w^3-w^2+\frac{1+ 9}{4}w-\frac{4k-1+ 27}{16}=0$$
where $k=4\zeta^3-4\zeta^2+10\zeta-\frac{13}{2}$.$\ \square$
Finally, let us show that every solution in the second set is included in the first set.
Proof :
For any $k$, we can take $\zeta$ satisfying $k=4 \zeta^3 - 4 \zeta^2 - 8 \zeta + 7$. Using such $\zeta$, the roots of the cubic equation
$$w^3-w^2+\frac{1-9}{4}w-\frac{4k-1-27}{16}=0$$
i.e.
$$(w - \zeta)\bigg(w^2-(1-\zeta)w + \zeta^2 - \zeta - 2\bigg)=0$$
can be written as
$$w=\zeta,\frac{1-\zeta\pm g_+(\zeta)}{2}$$
Each of the $3!=6$ solutions is included in the first set.
(For example, letting $u:=\frac{1-\zeta+g_+(\zeta)}{2}$, we get $\zeta=\frac{1-u\pm g_+(u)}{2}$.)
For any $k$, we can take $\zeta$ satisfying $k=4\zeta^3-4\zeta^2+10\zeta-\frac{13}{2}$. Using such $\zeta$, the roots of the cubic equation
$$w^3-w^2+\frac{1+ 9}{4}w-\frac{4k-1+ 27}{16}=0$$
i.e.
$$(w-\zeta) \bigg(w^2- (1-\zeta)w+ \zeta^2 - \zeta + \frac 52\bigg) = 0$$
can be written as
$$w=\zeta,\frac{1-\zeta\pm g_-(\zeta)}{2}$$
Each of the $3!=6$ solutions is included in the first set.$\ \square$