Why is the correct value in this limit problem?
Body: I came across this problem:
Find the largest value of the nonnegative integer $a$ for which $$\lim_{x \to 1} \left( \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right)^{\frac{1 - x}{1 - \sqrt{x}}} = \frac{1}{4} $$
The answer key gives $a = 0$, but I thought it should be $a = 2$. Here’s how I approached it:
- Exponent simplification:
$\frac{1 - x}{1 - \sqrt{x}} = \frac{(1 - x)(1 + \sqrt{x})}{(1 - \sqrt{x})(1 + \sqrt{x})} = \frac{(1 - x)(1 + \sqrt{x})}{1 - x} = 1 + \sqrt{x}$
So as $x \to 1$, the exponent approaches 2.
- Base evaluation using L'Hôpital's Rule:
$\lim_{x \to 1} \frac{-ax + \sin(x - 1) + a}{x + \sin(x - 1) - 1}$
Differentiating numerator and denominator:
Numerator: $-a + \cos(x - 1)$
Denominator: $1 + \cos(x - 1)$
At $x = 1$, this becomes:
$\frac{-a + 1}{1 + 1} = \frac{1 - a}{2}$
- Final expression:
$\left( \frac{1 - a}{2} \right)^2 = \frac{1}{4} \Rightarrow \frac{(1 - a)^2}{4} = \frac{1}{4} \Rightarrow (1 - a)^2 = 1 \Rightarrow 1 - a = \pm 1 \Rightarrow a = 0 \text{ or } 2$
Since both values satisfy the limit, and the question asks for the largest valid $a$, I expected the answer to be $a = 2$. Why is $a = 0$ instead?