Fix $\tau$ with $0<\tau<\pi$, and assume $\Re(a),\Re(b)>0$. For each such parameter, define the horizontal contour $H:=\left\{u=t+i\left(\frac{\pi}{2}-\tau\right):t\in\mathbb{R}\right\}$ and set $$F_a(u):=\frac{1}{\cosh^a(u)}$$ with $u\in H$. Since $\cosh(z)$ has no zeros or singularities for $|\Im(z)|<\frac{\pi}{2}$, $F_a(u)$ is analytic on and near the strip containing $H$. Moreover, as $|t|\to\infty$, $$\left|\cosh(t+i\theta)\right|=\frac{1}{2}\left|e^{t+i\theta}+e^{-t-i\theta}\right|\sim\frac{1}{2}e^{|t|},$$ so $\left|F_a\left(t+i\left(\frac{\pi}{2}-\tau\right)\right)\right|=O\left(e^{-a|t|}\right)$, and in particular, $F_a\in L^1(H)$. By the standard Fourier inversion theorem for $L^1$-kernels on a horizontal line, $$f_a(x)=\frac{1}{2\pi}\int_{u\in H}F_a(u)e^{ixu}\,\mathrm{d}u=\frac{1}{2\pi}\int_{-\infty+i\left(\frac{\pi}{2}-\tau\right)}^{\infty+i\left(\frac{\pi}{2}-\tau\right)}\frac{e^{ixu}}{\cosh^a(u)}\,\mathrm{d}u,$$ i.e. we generalise the identity $$\frac{2^{a-1}}{\Gamma(a)}\Gamma\left(\frac{a+ix}{2}\right)\Gamma\left(\frac{a-ix}{2}\right)=\int_{-\infty}^{\infty}\frac{e^{ixy}}{\cosh^a(y)}\,\mathrm{d}y$$ valid for $\Re(a)>0$, obtainable through the beta function with the substitution $e^{2y}=\frac{t}{1-t}$. Now, \begin{align*}\left(f_a * f_b\right)(x)&=\int_{y=-\infty}^{\infty}f_a(y)f_b(x-y)\,\mathrm{d}y\\ &=\int_{-\infty}^{\infty}\left[\frac{1}{2\pi}\int_{u\in H}F_a(u)e^{iyu}\,\mathrm{d}u\right]\left[\frac{1}{2\pi}\int_{v\in H}F_b(v)e^{i(x-y)v}\,\mathrm{d}v\right]\mathrm{d}y\\
&=\frac{1}{\left(2\pi\right)^2}\int_{y\in\mathbb{R}}\int_{u\in H}\int_{v\in H}F_a(u)F_b(v)e^{iyu}e^{i(x-y)v}\,\mathrm{d}v\,\mathrm{d}u\,\mathrm{d}y.\end{align*} We now check for absolute convergence of the triple integral. Write $u=t+i\alpha$, $v=s+i\alpha$ with $\alpha=\frac{\pi}{2}-\tau$. Let $\varepsilon>0$, then, $$\left|e^{iyu}\right|=e^{-y\Im(u)}=e^{-y\alpha},\quad\left|e^{i\left(x-y\right)v}\right|=e^{-\left(x-y\right)\alpha},$$ and $|F_a(u)|=O\left(e^{-a|t|}\right)$, $|F_b(v)|=O\left(e^{-b|s|}\right)$. Hence, $$\int_{\mathbb{R}^3}\left|F_a(u)F_b(v)e^{iyu}e^{i(x-y)v}e^{-\varepsilon y^2}\right|\mathrm{d}t\,\mathrm{d}s\,\mathrm{d}y\leq Ce^{-x\alpha}\int_{\mathbb{R}^3}e^{-a|t|-b|s|}e^{-\varepsilon y^2}\,\mathrm{d}t\,\mathrm{d}s\,\mathrm{d}y$$ for some $C>0$, which factorises as product of three convergent one-dimensional integrals, so by Fubini-Tonelli, we may freely reorder the $u,v$, and $y$ integrals. Evaluating the $y$ integral first gives $$\int_{y=-\infty}^{\infty}e^{iyu}e^{-iyv}e^{-\varepsilon y^2}\,\mathrm{d}y=\int_{-\infty}^{\infty}e^{iy(u-v)}e^{-\varepsilon y^2}\,\mathrm{d}y=\sqrt{\frac{\pi}{\varepsilon}}\exp\left(-\frac{\left(u-v\right)^2}{4\varepsilon}\right).$$ Now one may show that by the dominated convergence theorem, we may pass the limit $\varepsilon\to 0^+$ through the double integral to recover our original integral of interest. In the sense of distributions, recall that $$\lim_{\varepsilon\to 0^+}\sqrt{\frac{\pi}{\varepsilon}}\exp\left(-\frac{\left(u-v\right)^2}{4\varepsilon}\right)=2\pi\,\delta(u-v).$$ Hence, in the limit $\varepsilon\to 0^+$, the triple integral collapses to \begin{align*}\left(f_a*f_b\right)(x)&=\frac{1}{\left(2\pi\right)^2}\int_{u\in H}\int_{v\in H}F_a(u)F_b(v)e^{ixv}\cdot 2\pi\,\delta(u-v)\,\mathrm{d}v\,\mathrm{d}u\\
&=\frac{1}{2\pi}\int_{u\in H}F_a(u)F_b(u)e^{ixu}\,\mathrm{d}u.\end{align*} Now since $$F_a(u)F_b(u)=\left(\cosh^{-a}(u)\right)\left(\cosh^{-b}(u)\right)=\cosh^{-(a+b)}(u)=F_{a+b}(u),$$ we conclude that the last line is exactly $$\frac{1}{2\pi}\int_{u\in H}\frac{e^{ixu}}{\cosh^{a+b}(u)}\,\mathrm{d}u=f_{a+b}(x).$$ Thus indeed $f_a*f_b=f_{a+b}$, as claimed. $\square$