Proposition. Point $A(x_0, y_0)$ is a fixed point on the conic $C_1:ax^2 + by^2 = 1$ ($ab \neq 0$). Points $B$ and $C$ are moving on $C_1$, such that $\tan\angle BAC = t$. Then the envelope of the line $BC$ is $C_2:$ $$4ab(t^2+1)(ax^2+by^2-1) + t^2((a-b)(a x x_0 - b y y_0) + a + b)^2 = 0.\tag1\label1$$
I try to find the limit of $C_2$ when $C_1$ is a parabola $x^2=2py$.
Substituting$$y\gets y-\frac{\sqrt{a p^2+1}}{a p},\\b\gets\frac{a^2 p^2}{a p^2+1}\tag2\label2$$into the equation $C_1:a x^2+b y^2-1=0$ and taking the limit $a\to0$, $$\lim_{a\to0}\frac{ax^2+\frac{a^2 p^2}{a p^2+1}(y-\frac{\sqrt{a p^2+1}}{a p})^2-1}a=x^2-2py$$ I get the limit of $C_1$ is a parabola $\overline{C_1}:x^2=2py$.
Similarly substituting \eqref{2} and $y_0\gets y_0-\frac{\sqrt{a p^2+1}}{a p}$ into \eqref{1} and taking the limit $a\to0$, $$\lim_{a\to0}\frac{4a\frac{a^2 p^2}{a p^2+1}(t^2+1)\left(ax^2+\frac{a^2 p^2}{a p^2+1}(y-\frac{\sqrt{a p^2+1}}{a p})^2-1\right) + t^2\left((a-\frac{a^2 p^2}{a p^2+1})\left(a x x_0 -\frac{a^2 p^2}{a p^2+1} (y-\frac{\sqrt{a p^2+1}}{a p})(y_0-\frac{\sqrt{a p^2+1}}{a p})\right) + a + \frac{a^2 p^2}{a p^2+1}\right)^2}{a^4}=4 p^2 \left(t^2+1\right) \left(x^2-2 p y\right)+t^2 \left(2 p^2+p (y+y_0)+x x_0\right)^2$$ I get the limit of $C_2$ is $\overline{C_2}:4 p^2 \left(t^2+1\right) \left(x^2-2 p y\right)+t^2 \left(2 p^2+p (y+y_0)+x x_0\right)^2=0$
Is the proposition still true in the limit? That is,
Proposition. Point $A(x_0, y_0)$ is a fixed point on the conic $\overline{C_1}:x^2 =2py$. Points $B$ and $C$ are moving on $\overline{C_1}$, such that $\tan\angle BAC = t$. Then the envelope of the line $BC$ is $\overline{C_2}:$ $$\overline{C_2}:4 p^2 \left(t^2+1\right) \left(x^2-2 p y\right)+t^2 \left(2 p^2+p (y+y_0)+x x_0\right)^2=0$$

