Probably, the shortcut to the answer is the usage of analytical continuation - the solution by @metamorphy (the link in the comment above). You can consider the integral $\int_0^\infty u^\lambda\left(\frac1{u(e^u-1)}-\frac{e^{-au}}{u^2}+\frac{e^{-u}}{2u}\right)du$ or, integrating by part first, $\int_0^\infty u^\lambda\left(\frac1{u(e^u-1)}-\frac1{e^u-1}-\frac1{(e^u-1)^2}+\frac{e^{-u}}{2u}-\frac{e^{-u}}2\right)du$. Choosing $\lambda>1$ and handling every integral separately, you get the answer in the form of the analytical function of $\lambda$ and then take $\lambda=0$ in the final expression - to get the answer $\zeta'(0)$.
However, if you want to get the answer $-\frac{\ln(2\pi)}2$ at once, you can use another approach.
$$I=\int_0^\infty\left(\frac1{2u}\big(\coth\frac u2-1\big)-\frac1{u^2}+\frac{e^{-u}}{2u}\right)du\overset{u=2\pi x}{=}$$
$$=\frac12\int_0^\infty\left(\coth(\pi x)-1-\frac1{\pi x}+e^{-2\pi x}\right)\frac{dx}x$$
Integrating by parts
$$=\frac{2\pi}2\int_0^\infty\ln x\,e^{-2\pi x}dx+\int_0^\infty\left(\frac\pi2\frac{\ln x}{\sinh^2(\pi x)}-\frac{\ln x}{2\pi x^2}\right)dx$$
$$=-\frac\gamma2-\frac{\ln(2\pi)}2+\lim_{r\to 0}\left(\frac\pi2\int_r^\infty\frac{\ln x}{\sinh^2(\pi x)}dx-\frac1{2\pi}\int_r^\infty\frac{\ln x}{x^2}dx\right)$$
$$=-\frac\gamma2-\frac{\ln(2\pi)}2+\lim_{r\to 0}\left(I_1(r)+I_2(r)\right)\tag{1}$$
where
$$I_2(r)=-\frac1{2\pi}\int_r^\infty\frac{\ln x}{x^2}dx=-\frac{\ln r}{2\pi r}-\frac1{2\pi r}\tag{2}$$
$$I_1(r)=\frac\pi2\int_r^\infty\frac{\ln x}{\sinh^2(\pi x)}dx=\frac\pi 4\Re\left(\int_{-\infty}^{-r}+\int_r^\infty\frac{\ln x}{\sinh^2(\pi x)}dx\right)$$
$$=\frac\pi 4\Re\left(\int_{-\infty}^{-r}+\int_r^\infty\frac{\ln (ix)}{\sinh^2(\pi x)}dx\right)$$
Formally speaking, we have to define the cut in the upper half-plane - to make the $\ln x$ and whole integrand single-valued functions. But its position only affects the imaginary part of the integral.
Now, let's consider the integral in the complex plane
$$-\frac\pi 4\Re\oint_C\frac{\ln\Gamma(iz)}{\sinh^2(\pi z)}dz$$
along the following contour:

where $r$ is small but fixed parameter.
Noting that $\ln\Gamma(i(z-i))-\ln\Gamma(iz)=\ln(iz), \,\sinh^2(\pi(z-i))=\sinh^2(\pi z)$, that integrals along the paths 1 and 2 tend to zero at $R\to\infty$ and that there are no poles insider to contour $C$
$$-\frac\pi 4\Re\oint_C\frac{\ln\Gamma(iz)}{\sinh^2(\pi z)}dz=\frac\pi4\Re\left(\int_{-\infty}^{-r}+\int_r^\infty\frac{\ln\Gamma(i(x-i))-\ln\Gamma(ix)}{\sinh^2(\pi x)}dx+I_{C_1}+I_{C_2}\right)=0$$
$$\Rightarrow\,\frac\pi4\Re\left(\int_{-\infty}^{-r}+\int_r^\infty\frac{\ln(ix)}{\sinh^2(\pi x)}dx\right)=I_1(r)=-\frac\pi4\Re\left(I_{C_1}+I_{C_2}\right)\tag{3}$$
where $I_{C_{1,2}}$ denotes the integrals along the small arches of the radius $r$
$$-\frac\pi4\left(I_{C_1}+I_{C_2}\right)=\frac\pi4\int_\pi^{2\pi}\frac{\ln\Gamma(ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi+\frac\pi4\int_0^\pi\frac{\ln\Gamma(1+ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi$$
$$=\frac\pi4\int_\pi^{2\pi}\frac{\ln\Gamma(ire^{i\phi})-\ln\Gamma(1+ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi+\frac\pi4\int_0^{2\pi}\frac{\ln\Gamma(1+ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi$$
$$=-\frac\pi4\int_\pi^{2\pi}\frac{\ln(ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi+\frac\pi4\int_0^{2\pi}\frac{\ln\Gamma(1+ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi\tag{3a}$$
where, decomposing the integrand at $r\to0$
$$-\frac\pi4\int_\pi^{2\pi}\frac{\ln(ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi$$
$$=-\frac\pi4\frac{\pi i}2\int_\pi^{2\pi}\frac{ie^{-i\pi}}{\pi^2r}d\phi-\frac{\pi i}4\int_\pi^{2\pi}\frac{i\phi\, e^{-i\phi}}{\pi^2r}d\phi-\frac\pi4\frac{\ln r}{\pi^2r}\int_\pi^{2\pi}e^{-i\phi}id\phi+O(r\ln r)$$
integrating the second term by parts,
$$=\frac{\ln r}{2\pi r}+\frac1{2\pi r}+\text{imaginary terms}+O(r\ln r)\tag{4}$$
Using also $\Gamma(1+s)=1-\gamma s+O(s^2)$
$$\frac\pi4\int_0^{2\pi}\frac{\ln\Gamma(1+ire^{i\phi})}{\sinh^2(\pi re^{i\phi})}ire^{i\phi}d\phi=\frac\gamma2+O(r)\tag{5}$$
Taking the real part and then putting (4), (5) into (3a) and then into (3)
$$I_1(r)=\frac{\ln r}{2\pi r}+\frac1{2\pi r}+\frac\gamma2+O(r\ln r)\tag{6}$$
Putting (6) and (2) into (1)
$$I=-\frac\gamma2-\frac{\ln(2\pi)}2+\lim_{r\to0}\left(\frac{\ln r}{2\pi r}+\frac1{2\pi r}+\frac\gamma2+O(r\ln r)-\frac{\ln r}{2\pi r}-\frac1{2\pi r}\right)=-\,\frac{\ln(2\pi)}2$$