$\DeclareMathOperator{\sgn}{sgn}$
Let $f(x)=x^3+ax^2+bx+c$. Condition $f'(-\frac{1}{4})=-\frac{1}{4}$ implies $a=2b+\frac{7}{8}$ thus $f(x)=x^3+(2b+\frac{7}{8})x^2+bx+c$. Let $F:=\{\sgn f(k)\}_{k\in\mathbb{Z}}$ , $A:=\{F_{2k}\}_{k\in\mathbb{Z}}$ , $B:=\{F_{2k+1}\}_{k\in\mathbb{Z}}$.
$\not\exists k\in\mathbb{Z},f(k-1)f(k+1)<0\iff\forall k\in\mathbb{Z}, X_kX_{k+1}\ge0$ where $X\in\{A,B\}$.
We know that: $\lim_{x\to-\infty}f(x)=-\infty$ , $\lim_{x\to\infty}f(x)=\infty$ , so $\exists k_1,k_2\in\mathbb{Z},X_{k_1}X_{k_2}<0$.
It's not hard to deduce that:
$$(\forall k\in\mathbb{Z}, X_kX_{k+1}\ge0)\wedge(\exists k_1,k_2\in\mathbb{Z},X_{k_1}X_{k_2}<0)\implies(\exists k\in\mathbb{Z},X_k=0)$$
Then $f(x)$ must have at least 2 integer roots but $f(x)$ cannot have 3 integer roots (distinct or repeated) since that would imply $(2b+\frac{7}{8}\in\mathbb{Z})\wedge(b\in\mathbb{Z})$ ,which is false, so $f(x)$ has exactly 2 non-repeated integer roots $m<n$ and 1 non-integer root $x_0$, this implies $\exists !k\in\mathbb{Z},X_k=0$.
We have:$$(\forall k\in\mathbb{Z}, X_kX_{k+1}\ge0)\wedge(\exists !k\in\mathbb{Z},X_k=0)\implies X=\{...,-1,-1,0,1,1,...\}$$
Then we must have $n=m+1$ or $n=m+3$ because if $n$ and $m$ were too separated, the sequence $F$ would be something like:
$F=\{...,-1,-1,0,-1,1,-1,1,0,1,1,...\}$ and there would be too many roots.
Now there are 2 cases: case $n=m+3$ and case $n=m+1$.
Case 1: $n=m+3$
$F=\{...,-1,-1,0,-1,1,0,1,1,...\}$, $x_0\in(m+1,m+2)$.
Use Vieta's formula:
$$\begin{cases}m+n+x_0=-2b-\frac{7}{8}\\ mn+mx_0+nx_0=b\end{cases}\implies x_0=-\frac{2m^2+8m+\frac{31}{8}}{4m+7}$$
Solve the following inequality for integers:
$$m+1<-\frac{2m^2+8m+\frac{31}{8}}{4m+7}<m+2$$
we find out $m=-1,n=2,x_0=\frac{17}{24}$ , so $f(x)=(x+1)(x-2)(x-\frac{17}{24})$, this function does not satisfy $f'(\frac{1}{4})>0$ (and actually $f(-2)f(0)<0$).
->No solution in case 1, case closed.
(Update: I just realized you can skip the whole calculation in case 1. Notice that $F_{m-1}F_{m+1}>0$ and $F_m=0$, this contradicts the fact that m is a single root)
Case 2: $n=m+1$
$F=\{...,-1,-1,0,0,1,1,...\}$
We must have $f(\lfloor x_0\rfloor)f(\lfloor x_0\rfloor+1)\not>0$ otherwise there will be 2 distinct roots or 1 repeated root in $(\lfloor x_0\rfloor,\lfloor x_0\rfloor+1)$ thus $m-1<x_0<m+2$.
Again, by Vieta's formula: $x_0=-\frac{2m^2+4m+\frac{15}{8}}{4m+3}=-\frac{1}{2}m-\frac{5}{8}$
Solving $m-1<-\frac{1}{2}m-\frac{5}{8}<m+2$, we find out $m=-1$ or $m=0$.
Therefore:
$$(m,n,x_0)\in\{(-1,0,-\frac{1}{8}),(0,1,-\frac{5}{8})\}$$
$$\implies f(x)=(x+1)x(x+\frac{1}{8})\ \text{or}\ f(x)=x(x-1)(x+\frac{5}{8})$$
and $f(x)=(x+1)x\left(x+\frac{1}{8}\right)$ satisfy all conditions thus it is the only solution.
Answer: $f(4)=82.5$