I added another solution. See Added below.
Let $y_n:=n(x_n-1)$.
In order to prove that $\displaystyle\lim_{n\to\infty}y_n$ exists and is finite, it is sufficient to prove that for $n\ge 3$,
$$0\lt y_{n+1}\lt y_n\tag1$$
Let us prove $(1)$ by induction on $n$.
For $n=3$, $(1)$ holds.
Suppose that $(1)$ holds for $n$.
Then, we have
$$\begin{align}y_{n+2}&=(n+2)(x_{n+2}-1)
\\\\&=(n+2)\bigg(\sqrt{x_{n+1}+\frac{1}{n+1}}-1\bigg)
\\\\&=(n+2)\frac{x_{n+1}-1+\frac{1}{n+1}}{\sqrt{x_{n+1}+\frac{1}{n+1}}+1}
\\\\&=(n+2)\frac{\frac{y_{n+1}}{n+1}+\frac{1}{n+1}}{\sqrt{x_{n+1}+\frac{1}{n+1}}+1}
\\\\&\gt 0\end{align}$$
and
$$\begin{align}&y_{n+1}-y_{n+2}
\\\\&=(n+1)(x_{n+1}-1)-(n+2)(x_{n+2}-1)
\\\\&=(n+1)(x_{n+1}-1)-(n+2)\bigg(\sqrt{x_{n+1}+\frac{1}{n+1}}-1\bigg)
\\\\&=(n+1)x_{n+1}+1-(n+2)\sqrt{x_{n+1}+\frac{1}{n+1}}
\\\\&=\frac{((n+1)x_{n+1}+1)^2-(n+2)^2(x_{n+1}+\frac{1}{n+1})}{(n+1)x_{n+1}+1+(n+2)\sqrt{x_{n+1}+\frac{1}{n+1}}}
\\\\&=\frac{(n+1)\bigg((n+1) x_{n+1} + 1\bigg) \bigg(x_{n+1}-\frac{n^2+3n+3}{(n+1)^2}\bigg)}{(n+1)x_{n+1}+1+(n+2)\sqrt{x_{n+1}+\frac{1}{n+1}}}\end{align}$$
This is positive since
$$x_{n+1}-\frac{n^2+3n+3}{(n+1)^2}\gt 0\tag2$$
Here, $(2)$ does hold since
$$\begin{align}y_{n+1}\lt y_n&\iff (n+1)(x_{n+1}-1)\lt n(x_n-1)
\\&\iff (n+1)(x_{n+1}-1)\lt n(x_{n+1}^2-\frac 1n-1)
\\&\iff x_{n+1}(nx_{n+1}-n-1)\gt 0
\\&\iff x_{n+1}\gt \frac{n+1}{n}\end{align}$$
and
$$\frac{n+1}{n}-\frac{n^2+3n+3}{(n+1)^2}=\frac{1}{n (n + 1)^2}\gt 0$$
if possible , for completeness post your full solution
The following proof uses your idea with a few additional explanations.
(We use $\displaystyle\lim_{n\to\infty}x_n=1$ since it seems you already know this.)
Let $a:=\displaystyle\lim_{n\to\infty}y_n$ where we already know that $a$ exists and is finite.
Let $z_n:=x_{n-1}-1+\frac{1}{n-1}$.
We have
$$\begin{align}x_n^n&=((x_n)^2)^{n/2}
\\\\&=\bigg(x_{n-1}+\frac{1}{n-1}\bigg)^{n/2}
\\\\&=(1+z_n)^{n/2}
\\\\&=\bigg((1+z_n)^{1/z_n}\bigg)^{nz_n/2}
\\\\&=\bigg((1+z_n)^{1/z_n}\bigg)^{y_{n-1}/(2-2/n)+1/(2-2/n)}\end{align}$$
Since $\lim z_n=0$, we have
$$\lim_{n\to\infty}x_n^n=e^{\frac a2+\frac 12}\tag3$$
Also, we have
$$x_n^n=(1+x_n-1)^n=((1+x_n-1)^{1/(x_n-1)})^{y_n}$$
from which we get
$$\lim_{n\to\infty}x_n^n=e^{a}\tag4$$
From $(3)(4)$, we have $\frac a2+\frac 12=a$ which implies $a=1$, and so we finally obtain
$$\color{red}{\lim_{n\to\infty}x_n^n=e}$$
Added :
I'm going to write another solution.
Let us first prove by induction that, for $n\ge 4$,
$$\frac{n}{n-1}\lt x_n\lt \frac{n}{n-1}+\frac{1}{(n-1)^2}$$
For $n=4$, it holds.
Suppose that it holds for $n$.
Then, we have
$$\begin{align}x_{n+1}-\frac{n+1}{n}&=\sqrt{x_n+\frac 1n}-\frac{n+1}{n}
\\\\&=\frac{x_n+\frac 1n-(\frac{n+1}{n})^2}{\sqrt{x_n+\frac 1n}+\frac{n+1}{n}}
\\\\&=\frac{\overbrace{(x_n-\frac{n}{n-1})}^{\text{positive}}+\overbrace{\frac{1}{(n - 1) n^2}}^{\text{positive}}}{\sqrt{x_n+\frac 1n}+\frac{n+1}{n}}
\\\\&\gt 0\end{align}$$
and
$$\begin{align}&\frac{n+1}{n}+\frac{1}{n^2}-x_{n+1}
\\\\&=\frac{n+1}{n}+\frac{1}{n^2}-\sqrt{x_n+\frac 1n}
\\\\&=\frac{(\frac{n+1}{n}+\frac{1}{n^2})^2-(x_n+\frac 1n)}{\frac{n+1}{n}+\frac{1}{n^2}+\sqrt{x_n+\frac 1n}}
\\\\&=\frac{\overbrace{(\frac{n}{n-1}+\frac{1}{(n-1)^2}-x_n)}^{\text{positive}}+\overbrace{\frac{(n - 3) n^3 + 1}{(n - 1)^2 n^4}}^{\text{positive}}}{\frac{n+1}{n}+\frac{1}{n^2}+\sqrt{x_n+\frac 1n}}
\\\\&\gt 0.\ \square\end{align}$$
So, we have
$$\bigg(\frac{n}{n-1}\bigg)^n\lt x_n^n\lt\bigg(\frac{n}{n-1}+\frac{1}{(n-1)^2}\bigg)^n$$
i.e.
$$\bigg(1+\frac{1}{n-1}\bigg)\bigg(1+\frac{1}{n-1}\bigg)^{n-1}\lt x_n^n\lt\bigg(\bigg(1+\frac{1}{\frac{(n-1)^2}{n}}\bigg)^{\frac{(n-1)^2}{n}}\bigg)^{\frac{1}{1-2/n+1/(n^2)}}$$
Therefore, we finally get $\displaystyle\lim_{n\to\infty}x_n^n=e$.