Hypergeometric representations.
From my previous answer, of interest is the sum
$$f_n(z)=2^{-2n-1}\sum_{k=1}^n \binom{2n}{n-k}\frac{1}{k^2}z^{k-1}$$
First, we shift the index by $1$ -
$$f_n(z)=2^{-2n-1}\sum_{k=0}^{n-1}\binom{2n}{n-k-1}\frac{1}{(k+1)^2}z^k\tag{1}$$
Owing to the fact that
$$\binom{2n}{n-k-1}=\frac{\Gamma(2n+1)}{\Gamma(n+k+2)\Gamma(n-k)}$$
We can safely extend this sum to $k\to\infty$ since $\frac{1}{\Gamma(n-k)}=0$ for $k\geq n$. Now, using the Legendre duplication formula, one can easily see
$$\binom{2n}{n-k-1}=\frac{n~2^{2n}}{(n+1)!}\frac{\Gamma(n+1/2)}{\Gamma(1/2)}~\frac{k!}{(n+2)^{\overline k}}~\binom{n-1}{k}$$
Where $(x)^{\overline k}=\prod_{m=0}^{k-1}(x+m)$ is the rising factorial. Using the rising factorial definition of the binomial coefficient
$$\binom{x}{k}=(-1)^k\frac{(-x)^{\overline k}}{k!}$$
And the obvious representation $k!=(1)^{\overline k}$
We can write
$$\binom{2n}{n-k-1}=\frac{n~2^{2n}}{(n+1)!}\frac{\Gamma(n+1/2)}{\Gamma(1/2)}~\frac{(1)^{\overline k}(1-n)^{\overline k}}{(n+2)^{\overline k}}~\frac{(-1)^k}{k!}$$
Finally, we note the useful representation
$$k+1=\frac{(2)^{\overline k}}{(1)^{\overline k}}$$
So
$$\frac{1}{(k+1)^2}=\frac{(1)^{\overline k}(1)^{\overline k}}{(2)^{\overline k}(2)^{\overline k}}$$
Therefore, returning all the way to $(1)$, we find
$$f_n(z)=\\2^{-2n-1}\frac{n~2^{2n}}{(n+1)!}\frac{\Gamma(n+1/2)}{\Gamma(1/2)}\sum_{k=0}^\infty \frac{(1)^{\overline k}(1-n)^{\overline k}}{(n+2)^{\overline k}}\frac{(1)^{\overline k}(1)^{\overline k}}{(2)^{\overline k}(2)^{\overline k}}~\frac{(-1)^kz^k}{k!}$$
Simplifying,
$$\boxed{f_n(z)=\frac{1}{2}\frac{1}{n+1}\frac{1}{\mathrm B(n,1/2)}{}_4F_3\left(\begin{matrix}(1-n),1,1,1 \\ (n+2),2,2\end{matrix}~\bigg|~-z\right)}$$
Meaning
$$A_n=\pi^2 2^{-2n-3}\binom{2n}{n}-f_n(-1)-f_n(1)$$
$$A_n=\\ \pi^2 2^{-2n-3}\binom{2n}{n}-\frac{1}{2}\frac{1}{n+1}\frac{1}{\mathrm B(n,1/2)}\left[{}_4F_3\left(\begin{matrix}(1-n),1,1,1 \\ (n+2),2,2\end{matrix}~\bigg|~-1\right)+{}_4F_3\left(\begin{matrix}(1-n),1,1,1 \\ (n+2),2,2\end{matrix}~\bigg|~1\right)\right]$$
Via the even part identity
$$\frac{1}{2}{}_pF_q\left(\begin{matrix}a_1,\dots ,a_p \\ b_1,\dots,b_q\end{matrix}~\bigg|~z\right)+\frac{1}{2}{}_pF_q\left(\begin{matrix}a_1,\dots ,a_p \\ b_1,\dots,b_q\end{matrix}~\bigg|~-z\right) \\ ={}_{2p}F_{2q+1}\left(\begin{matrix}\frac{a_1}{2},\dots,\frac{a_p}{2},\frac{a_p+1}{2},\dots,\frac{a_p+1}{2} \\ \frac{b_1}{2},\dots,\frac{b_q}{2},\frac{b_1+1}{2},\dots,\frac{b_q+1}{2},\frac{1}{2}\end{matrix}~\bigg|~4^{p-q-1}z^2\right)$$
We see that this is equivalent to
$$\boxed{A_n= \pi^2 2^{-2n-3}\binom{2n}{n}-\frac{1}{n+1}\frac{1}{\mathrm B(n,1/2)}~{}_5F_4\left(\begin{matrix}\frac{1-n}{2},1-\frac{n}{2},\frac{1}{2},\frac{1}{2},1 \\ \frac{n}{2}+1,\frac{n+3}{2},\frac{3}{2},\frac{3}{2}\end{matrix}~\bigg|~1\right)}$$
Feel free to numerically check my work.