We seek to evaluate
$$\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} {n\choose k}
\left(1-\frac{k}{n}\right)^n.$$
Expanding the powered term,
$$\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} {n\choose k}
\sum_{q=0}^n {n\choose q} (-1)^q \frac{k^q}{n^q}.$$
Now for $q=0$ we get
$$\sum_{k=1}^{n-1} \frac{(-1)^{k+1}}{k} {n\choose k}
= \sum_{k=1}^{n-1} \frac{(-1)^{n-k+1}}{n-k} {n\choose k}
\\ = [z^n] \log\frac{1}{1-z}
\sum_{k=1}^{n-1} (-1)^{n-k+1} z^k {n\choose k}.$$
Here we may include $k=n$ because it does not get past
the extractor. We get $(-1)^{n+1}/n$ from the $k=0$
term,
$$(-1)^n/n+ (-1)^{n+1} [z^n] \log\frac{1}{1-z} (1-z)^n
\\ = (-1)^n/n - [z^n] \log\frac{1}{1-z} (z-1)^n
= (-1)^n/n - \;\underset{z}{\mathrm{res}}\;
\frac{1}{z^{n+1}} (z-1)^n \log\frac{1}{1-z}.$$
Now put $z/(z-1)=u$ in the residue so that $z=u/(u-1)$
and $dz = -1/(u-1)^2 \; du$ to get (flip sign)
$$\;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} (u-1) \log\frac{1}{1-u/(u-1)} \frac{1}{(u-1)^2}
\\ = \;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} \log(1-u) \frac{1}{u-1}
\\ = \;\underset{u}{\mathrm{res}}\;
\frac{1}{u^{n+1}} \log\frac{1}{1-u} \frac{1}{1-u} = H_n.$$
We thus have
$$\frac{(-1)^n}{n} + H_n.$$
The remaining sum is
$$\sum_{q=1}^n {n\choose q} (-1)^q \frac{1}{n^q}
\sum_{k=1}^{n-1} (-1)^{k+1} {n\choose k} k^{q-1}
\\ = \sum_{q=1}^{n} {n\choose q} (-1)^{q} \frac{1}{n^q}
(q-1)! [z^{q-1}]
\sum_{k=1}^{n-1} (-1)^{k+1} {n\choose k} \exp(kz)
\\ = - \sum_{q=1}^{n} {n\choose q} (-1)^{q} \frac{1}{n^q}
(q-1)! [z^{q-1}]
\left[(1-\exp(z))^n - 1 - (-1)^n \exp(nz) \right]
\\ = -1 + \frac{(-1)^n}{n}
\sum_{q=1}^{n} {n\choose q} (-1)^q
+ (-1)^n n! \sum_{q=1}^{n} {n\choose q} (-1)^q
\frac{1}{n^q} {q-1\brace n}.$$
Now with the third term we require $n\ge q$ as well as
$q-1\ge n$ which makes for a zero
contribution. Collecting everything we find
$$\frac{(-1)^n}{n} + H_n - 1 + \frac{(-1)^n}{n} ((1-1)^n-1)
= H_n-1.$$
This is the claim. We could have skipped the Stirling
numbers just noting that $(1-\exp(z))^n = (-1)^n z^n
+\cdots$ so we get zero from the coefficient $[z^{q-1}]
(1-\exp(z))^n$ because $0\le q-1\le n-1.$