The process resembles the construction of the Sierpinski carpet, a fractal formed by iteratively subdividing a square and removing central portions:
- Start with a square of side $\text{L}$. Its area is $\text{L}^2$;
- Remove the "middle" square with $\frac{\displaystyle1}{\displaystyle9}$ of the area, i.e., area $\frac{\displaystyle\text{L}^2}{\displaystyle9}$. The side length of this square is $\sqrt{\frac{\displaystyle\text{L}^2}{\displaystyle9}}=\frac{\displaystyle\text{L}}{\displaystyle3}$. This can be visualized by dividing the square into a $3×3$ grid of nine smaller squares, each with side $\frac{\displaystyle\text{L}}{\displaystyle3}$ and area $\frac{\displaystyle\text{L}^2}{\displaystyle9}$, and removing the central one. The remaining area is $\text{L}^2-\frac{\displaystyle\text{L}^2}{\displaystyle9}=\frac{\displaystyle8\text{L}^2}{\displaystyle9}$, consisting of eight smaller squares;
- For each of the eight remaining squares (side $\frac{\displaystyle\text{L}}{\displaystyle3}$), remove their central square with area $\frac{\displaystyle1}{\displaystyle9}\left(\frac{\displaystyle\text{L}}{\displaystyle3}\right)^2=\frac{\displaystyle\text{L}^2}{\displaystyle81}$. Total area removed is $8\cdot\frac{\displaystyle\text{L}^2}{\displaystyle81}=\frac{\displaystyle8\text{L}^2}{\displaystyle81}$. Remaining area is $\frac{\displaystyle8\text{L}^2}{\displaystyle9}-\frac{\displaystyle8\text{L}^2}{\displaystyle81}=\left(\frac{\displaystyle8\text{L}}{\displaystyle9}\right)^2$.
Generally, after $\text{n}$-stages, the remaining area is $\text{L}^2\left(\frac{\displaystyle8}{\displaystyle9}\right)^\text{n}$, and as $\text{n}\space\to\space\infty$, this approaches zero. However, the problem states the final object has mass $\text{m}$, suggesting that despite the area vanishing, the fractal retains a finite mass distributed over its structure, typical in idealized fractal problems.
The final object is self-similar: it consists of eight smaller copies of itself, each scaled by a factor of $\text{s}=\frac{\displaystyle1}{\displaystyle3}$ (since each smaller square’s side is $\frac{\displaystyle1}{\displaystyle3}$of the previous). With a total mass $\text{m}$, each small copy has mass $\frac{\displaystyle\text{m}}{\displaystyle8}$. The moment of inertia $\text{I}$ about the central axis is the sum of contributions from these eight copies, each with its own moment of inertia about the central axis, accounting for their positions.
For a small copy:
- Mass: $\frac{\displaystyle\text{m}}{\displaystyle8}$;
- Scaling factor: $\text{s}=\frac{\displaystyle1}{\displaystyle3}$;
- Moment of inertia about its own center: If the entire object has moment of inertia $\text{I}$, a scaled copy’s moment of inertia about its own center scales with mass and distance squared. Since mass is $\frac{\displaystyle\text{m}}{\displaystyle8}$ and linear dimensions scale by $\frac{\displaystyle1}{\displaystyle3}$, the moment of inertia scales as:
$$\text{I}_\text{small}=\left(\frac{\frac{\text{m}}{8}}{\text{m}}\right)\left(\frac{1}{3}\right)^2\text{I}=\frac{\text{I}}{72}\tag1$$
However, we need the moment of inertia of each small copy about the central axis of the entire object, not its own center. Using the parallel axis theorem, $\text{I}=\text{I}_\text{cm}+\text{md}^2$, where $\text{d}$ is the distance from the small copy’s center to the central axis.
Place the original square from $(0,0)$ to $(\text{L},\text{L})$, with center at $\left(\frac{\displaystyle\text{L}}{\displaystyle2},\frac{\displaystyle\text{L}}{\displaystyle2}\right)$. After the first removal, the eight small squares (side $\frac{\displaystyle\text{L}}{\displaystyle3}$) are at:
- Corners: $(0,0)$ to $\left(\frac{\displaystyle\text{L}}{\displaystyle3},\frac{\displaystyle\text{L}}{\displaystyle3}\right)$, center $\left(\frac{\displaystyle\text{L}}{\displaystyle6},\frac{\displaystyle\text{L}}{\displaystyle6}\right)$; $\left(\frac{\displaystyle2\text{L}}{\displaystyle3},0\right)$ to $\left(\text{L},\frac{\displaystyle\text{L}}{\displaystyle3}\right)$, center $\left(\frac{\displaystyle5\text{L}}{\displaystyle6},\frac{\displaystyle\text{L}}{\displaystyle6}\right)$; etc.;
- Sides: $\left(\frac{\displaystyle\text{L}}{\displaystyle3},0\right)$ to $\left(\frac{\displaystyle2\text{L}}{\displaystyle3},\frac{\displaystyle\text{L}}{\displaystyle3}\right)$, center $\left(\frac{\displaystyle\text{L}}{\displaystyle2},\frac{\displaystyle\text{L}}{\displaystyle6}\right)$; etc.
Distances from $\left(\frac{\displaystyle\text{L}}{\displaystyle2},\frac{\displaystyle\text{L}}{\displaystyle2}\right)$:
- Corner squares (four such squares):
$$\text{d}=\sqrt{\left(\frac{\text{L}}{2}-\frac{\text{L}}{6}\right)^2+\left(\frac{\text{L}}{2}-\frac{\text{L}}{6}\right)^2}=\frac{\text{L}\sqrt{2}}{3}\tag2$$
- Side squares (four such squares):
$$\text{d}=\sqrt{\left(\frac{\text{L}}{2}-\frac{\text{L}}{2}\right)^2+\left(\frac{\text{L}}{2}-\frac{\text{L}}{6}\right)^2}=\frac{\text{L}}{3}\tag3$$
So, the total moment of inertia:
$$\text{I}=8\text{I}_\text{small}+4\left(\frac{\text{m}}{8}\left(\frac{\text{L}\sqrt{2}}{3}\right)^2\right)+4\left(\frac{\text{m}}{8}\left(\frac{\text{L}}{3}\right)^2\right)\tag4$$
Using $(1)$, we get:
$$\text{I}=8\cdot\frac{\text{I}}{72}+4\left(\frac{\text{m}}{8}\left(\frac{\text{L}\sqrt{2}}{3}\right)^2\right)+4\left(\frac{\text{m}}{8}\left(\frac{\text{L}}{3}\right)^2\right)\space\Longleftrightarrow\space\text{I}=\frac{5\text{mL}^2}{16}\tag5$$