The general form of an arithmetic progression is $$
a_n = a_1 + (n-1) d
$$
where $d$ is the difference between successive terms. By assumption, $a_1$ and $d$ are positive.
Substituting that into the limit, you obtain $$
\Lambda = \lim\limits_{n\rightarrow\infty} \frac{n\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{n a_1 + \sum\limits_{k=1}^n (k-1)d}
$$
The sum $\sum\limits_{k=1}^n (k-1)$ is simply the $(n-1)$th triangular number, hence it equals $\frac{n(n-1)}2$. Therefore we have $$
\lim\limits_{n\rightarrow\infty} \frac{n\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{n a_1 + \sum\limits_{k=1}^n (k-1)d} =\lim\limits_{n\rightarrow\infty} \frac{n\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{n a_1 + d\frac{n(n-1)}2} = \lim\limits_{n\rightarrow\infty} \frac{\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{a_1 + \frac d 2 (n-1)}
$$
The denominator is asymptotically $\frac d 2 n$, hence we have $$
\Lambda = \lim\limits_{n\rightarrow\infty} \frac{\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{\frac d 2 n}
$$
The numerator looks a lot like $(n!)^{\frac1n}$, so if you're familiar with Stirling's approximation, you can probably see where to go next right away. Note that, by Stirling's approximation, for any $\alpha\in \mathbb{R}$ and $m\in\mathbb{Z}$, we have $$
\lim\limits_{n\rightarrow\infty} \frac{(\alpha \cdot (n-m)!)^{\frac1n}}{n} = \frac1e
$$
Let's manipulate our equation so that it looks similar:
\begin{eqnarray}
\Lambda&=&\lim\limits_{n\rightarrow\infty} \frac{\left(\prod\limits_{k=1}^n (a_1 + (k-1)d)\right)^{\frac1n}}{\frac d 2 n} = 2\lim\limits_{n\rightarrow\infty} \left(\frac{\prod\limits_{k=1}^n (a_1 + (k-1)d)}{d^n n^n} \right)^{\frac1n} \\&=& 2\lim\limits_{n\rightarrow\infty} \prod\limits_{k=1}^n \left(\frac{\frac {a_1}d + (k-1)}{ n} \right)^{\frac1n}
= 2\lim\limits_{n\rightarrow\infty} \prod\limits_{k=0}^{n-1} \left(\frac{\frac {a_1}d + k}{ n} \right)^{\frac1n}
\end{eqnarray}
Now the numerator looks even more like a factorial than before. Note that $$
k \le \frac{a_1}d + k \le \lceil\frac{a_1}d\rceil + k
$$
Therefore $$
\frac{a_1}d (n-1)!\le\prod\limits_{k=0}^{n-1}(\frac {a_1}d + k)\le(\lceil\frac{a_1}d\rceil+n-1)!$$
so we only need to apply the squeeze theorem and we're done.