Does the integral $\displaystyle\int_{0}^{1}\{\frac{1}{x^n}\}dx$ exist? where $n\in \mathbb{Z}^+$ and $n\geq 2$, $\{x\} $is the fractional part. As is known, when $n=1$, the integral equals $1-\gamma$. here .what about the case $n\geq 2?$ I am wondering whether the following is right:
\begin{align} &\quad\ \int^1_0\left\{\frac{1}{x^n}\right\}\mathrm dx\\ &\overset{x\to\frac1 x}{=}\int^\infty_1\frac{\{x^n\}}{x^2}\mathrm dx\\ &\overset{x^n\to x}{=}\frac1n\int^\infty_1\frac{\{x\}}{x^{\frac1n+1}}\mathrm dx\\ &=\frac1n\sum_{k\geq 1}\int^{k+1}_k\frac{\{x\}}{x^{\frac1n+1}}\mathrm dx\\ &=\frac1n\sum_{k\geq 1}\int^{k+1}_k\frac{x-k}{x^{\frac 1n+1}}\mathrm dx\\ &\overset{x-k\to x}{=}\frac1n\sum_{k\geq 1}\int^1_0\frac{x\mathrm dx}{(x+k)^{\frac1n+1}}\\ &=\frac1{n-1}\sum_{k\geq 1}\left[\frac{kn+1}{(1+k)^{\frac1n}}-\frac{n}{k^{\frac1n-1}}\right]\\ &=\frac1{n-1}\lim_{N\to \infty}\sum^N_{k=1}\left[ \frac{n}{(1+k)^{\frac1n-1}}+\frac{1}{(1+k)^{\frac1n}}-\frac{n}{k^{\frac1n-1}}\right]\\ &=\frac1{n-1}\lim_{N\to \infty} n(N+1)^{1-\frac1n}-n+ \frac1{n-1}\lim_{N\to \infty}\sum^N_{k=1}\left[ \frac{1}{(1+k)^{\frac1n}}\right]\\ &=+\infty \end{align} Accurately, are the last two steps correct? Any help is appreciated, thanks!