Another approach:
$$a_n:=\left(\frac{a^{1/n}+b^{1/n}+c^{1/n}}3\right)^n\implies \log a_n=n\log\left(\frac{a^{1/n}+b^{1/n}+c^{1/n}}3\right)$$
But applying l'Hospital's rule to the continuous variable function we get
$$\lim_{n\to\infty}\log a_n=\lim_{n\to\infty}\frac{\left(\frac{a^{1/n}+b^{1/n}+c^{1/n}}3\right)}{\frac1n}\stackrel{\text{l'H}}=\lim_{n\to\infty}\frac{-\frac1{3n^2}\left(a^{1/n}\log a+b^{1/n}\log b+c^{1/n}\log c\right)}{-\frac1{n^2}}=$$
$$=\frac13\left(\log a+\log b+\log c\right)=\log \sqrt[3]a+\log\sqrt[3]b+\log\sqrt[3]c\implies$$
$$\implies\lim_{n\to\infty}a_n=\sqrt[3]a\sqrt[3]b\sqrt[3]c=\sqrt[3]{abc}$$