$$ \phi: \mathbb{Z}[\sqrt{3}] \to \mathbb{Z}_6 , a+\sqrt{3}b \mapsto a+3b$$
So if we have a ring morphism.
$\phi(1)=1$, so $\phi(3)=3$ and therefore $\phi(\sqrt{3})=3$ is the only possibilty, so we guess this as our morphism.
We now have to check if $\phi$ is a morphism and look if it is surjective and observe $\ker \phi$.
$\phi(a+c+b\sqrt{3}+d\sqrt{3}) = \phi(a+b\sqrt{3})+\phi(c+\sqrt{3}d)$ \ $ \phi((a+b\sqrt{3})(c+\sqrt{3}d))= \phi(ac+\sqrt{3}(bc+ad)+3bd))$ $ =ac+3bd+3bc+3ad$ $= (a+3b)(c+3d) $
That it is surjective is clear.
$\ker \phi=\{a+\sqrt{3}b, a,b\in \mathbb{Z}|a \mod 6=0 \lor b \mod 2=0 \lor (a \mod 6 =3\land b\mod 2=1)\}$
If we have $a=6k:6=-(3+\sqrt{3})^2+6(3+\sqrt{3})$
If we have $b=2k,2\sqrt{3}=2(3+\sqrt{3})-6=... $
If we have $a=3+6k$ and $b=1+2l$:$3+\sqrt{3}$
So $\ker \phi \subseteq (3+\sqrt 3)$, but also $\phi(3+\sqrt 3)=0$