0

This integration is from the book 3.3.18

The answer:

$$I = \int^1_0 \frac{\ln(x)\ln(1+x)}{1+x^2} \,\mathrm dx = \int^1_0 \frac{\ln^2(1+x)}{1+x^2} \,\mathrm dx -\frac{1}{2}\int^{\infty}_0 \frac{\ln^2(1+x)}{1+x^2} \,\mathrm dx +\frac{1}{2} \int^1_0 \frac{\ln^2(x)}{1+x^2} \,\mathrm dx$$

We have: $$\int^1_0 \frac{\ln^2(x)}{1+x^2} \,\mathrm dx = \frac{\pi^3}{16}$$ and we have:

$$\int_0^1\frac{\ln^2(1+x)}{1+x^2}\,\mathrm dx=4\Im\operatorname{Li}_3(1+i)-\frac{7\pi^3}{64}-\frac{3\pi}{16}\ln^22-2\ln2\ G$$ and:

$$\int\limits_0^\infty\frac{\ln^2(1+x)}{1+x^2}\,\mathrm dx=2\Im\left(\operatorname{Li}_3(1+i)\right)\ $$

Therefore: $$I =3\Im\left(\operatorname{Li}_3(1+i)\right) -\frac{5\pi^3}{128} -\frac{3\pi}{16}\ln^2(2)-2\ln(2)G$$

Where : $$G \text{: Catalan Constant}$$ $$\operatorname{Li}_3(x)=\sum_{n=1}^{\infty} \frac{x^n}{n^3}$$

Is there another way to evaluate this integration?

Rócherz
  • 4,241
Delta
  • 1

1 Answers1

1

$ \newcommand{\Li}{\mathrm{Li}} \newcommand{\logr}[1]{\log\left(#1\right)} \newcommand{\HypF}[4]{{}_{2}F_{1}\left(\begin{array}{cc} {#1} ,{#2} \\{#3} \end{array} ;{#4} \right)} \newcommand{\HypthreeFtwo}[6]{{}_{3}F_{2}\left(\begin{array}{cc} {#1} ,{#2} ,{#3} \\ {#4} , {#5}\end{array};{#6}\right)} \renewcommand{\a}{\alpha} \renewcommand{\b}{\beta} \newcommand{\Res}{\mathbf{Res}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\N}{\mathbb{N}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\am}{\mathrm{am}} \newcommand{\sn}{\mathrm{sn}} \newcommand{\cn}{\mathrm{cn}} \newcommand{\dn}{\mathrm{dn}} \newcommand{\ns}{\mathrm{ns}} \newcommand{\nc}{\mathrm{nc}} \newcommand{\nd}{\mathrm{nd}} \newcommand{\scn}{\mathrm{sc}} \newcommand{\cs}{\mathrm{cs}} \newcommand{\sd}{\mathrm{sd}} \newcommand{\ds}{\mathrm{ds}} \newcommand{\cd}{\mathrm{cd}} \newcommand{\dc}{\mathrm{dc}} \newcommand{\dilogarithm}[1]{\mathrm{Li}_2\left({#1} \right) } \newcommand{\trilogarithm}[1]{\mathrm{Li}_3\left({#1} \right) } \newcommand{\polylogarithm}[2]{\mathrm{Li}_{#1}\left(#2\right)} \newcommand{\risingfactorial}[2]{{#1}^{\overline{#2}} } \newcommand{\fallingfactorial}[2]{{#1}^{\underline{#2}} } \renewcommand{\sl}[1]{\mathrm{sl}{(#1)}} \newcommand{\lem}{\varpi} \newcommand{\erf}{\text{erf}} $ Do integration by parts to get $$I=\underbrace{\int_0^1\frac{\tan^{-1}(x)}{x}\ln(1+x)\, dx}_{J}-{\underbrace{\int_0^1\frac{ \ln(x)}{1+x}\tan^{-1}(x)\, dx}_{K}}$$ The first integral is solved in this Instagram post. For $K$, $$K=\int_0^1\frac{\tan^{-1} x}{x}\ln(x)-{\underbrace{\int_0^1\int_0^1\frac{\ln x}{(1+x)(1+x^2y^2)}\, dx\, dy}_{K'}}$$ $$K'=\int_0^1\int_0^y\frac{\ln(\frac{x}{y})}{(x+y)(1+x^2)}\, dxdy$$ $$=\int_0^1\int_0^y\frac{\ln(\frac{x}{y})}{(x+y)(1+x^2)}+\frac{\ln(\frac{y}{x})}{(x+y)(1+y^2)}\, dxdy-\int_0^1 \int_0^1 \frac{\ln(\frac{y}{x})}{(x+y)(1+y^2)}\, dx\, dy$$ $$K'=\frac{1}{2}\int_0^1\int_0^1 \left(\frac{\ln(\frac{x}{y})}{(x+y)(1+x^2)}+\frac{\ln(\frac{y}{x})}{(x+y)(1+y^2)}\right)dx\, dy+\int_0^1\frac{\ln x}{1+x}\, dx\int_0^1 \frac{dy}{1+y^2}$$ $$=\frac{1}{2}\int_0^1\int_0^1 \frac{y\ln(x)+x\ln(y)-y\ln(y)-x\ln(x)}{(1+y^2)(1+x^2)}\, dx\, dy+\frac{\pi}{4}\frac{\pi^2}{12}$$ Now the integrals can be evaluated individually, we get $$K=\frac{\ln 2}{2}G-\frac{\pi^3}{64}$$


P.S. Since not everyone has an Instagram account, I might as well put my solution here to make the answer more self contained.

Consider $$I_1=\int_0^1\frac{\tan^{-1} x}{x}\ln(1-x)\, dx \quad,\quad I_2=\int_0^1\frac{\tan^{-1} x}{x}\ln(1+x)\, dx$$ Denote $\chi(x)=\int_0^x \frac{\tanh^{-1} z}{z}\, dz$. Note the result $$\chi (z)+\chi\left(\frac{1-z}{1+z}\right)=\frac{\pi^2}{8}-\frac{1}{2}\ln(z)\ln\left(\frac{1-z}{1+z}\right)$$ Which could be seen true by differentiating both sides. \par Multiply both sides by $\frac{1}{1+z^2}$ and integrate both sides form 0 to 1 $$2\int_0^1 \frac{\chi(x)}{1+x^2}\, dx=\frac{\pi^3}{32}+\int_0^1 \frac{\ln x}{1+x^2}\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\, dx$$ The left hand side, via IBP is equal to: $$2\left[\frac{\pi^2}{8}\frac{\pi}{4}-\int_0^1\frac{\tan^{-1} x\tanh^{-1} x}{x}\, dx\right]$$ $$=\frac{\pi^3}{16}-I_2+I_1$$

i.e. $$I_1-I_2=-\frac{\pi^3}{32}+{\underbrace{\int_0^1 \frac{\ln x}{1+x^2}\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\, dx}_{I'}}$$ We compute $I'$:

$$I'=\int_0^1 \frac{\ln x}{1+x^2}\frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)\, dx$$ $$=\int_0^1 \int_0^1 \frac{z \ln z}{(1+z^2)(1-z^2 t^2)}\, dz\, dt=\int_0^1 \frac{1}{1+t^2}\int_0^1 \left(\frac{t^2 z \ln z}{1-z^2 t^2}+\frac{z \ln z}{1+z^2}\right)\, dz\, dt$$ $$=\int_0^1 \frac{1}{1+t^2}{\underbrace{\int_0^1 \frac{t^2 z \ln z}{1-z^2 t^2}\, dz}_{-\frac{\text{Li}_2(t^2)}{4}}}\, dt+\int_0^1 \frac{z\ln z}{1+z^2}\, dz \int_0^1 \frac{dt}{1+t^2}$$ $$=-\frac{\pi^3}{192}-\frac{1}{4}\int_0^1 \frac{\dilogarithm{t^2}}{1+t^2}\, dt$$ doing IBP gives

$$=-\frac{\pi^3}{192}-\frac{1}{4}\left(\zeta(2)\frac{\pi}{4}+\int_0^1 2\frac{\ln(1-t^2)}{t}\tan^{-1}(t)\, dt\right)$$ $$\implies I'=-\frac{\pi^3}{64}-\frac{I_1}{2}-\frac{I_2}{2}$$ Putting this back gives $$I_1-I_2=-\frac{\pi^3}{32}+I'$$ $$I_1-I_2=-\frac{3\pi^3}{64}-\frac{I_1}{2}-\frac{I_2}{2}$$ $$\implies I_2=\frac{3\pi^3}{32}+3I_1$$Hence we have the relationship between $I_2$ and $I_1$

We now compute $I_1$:

$$I_1=\int_0^1 \frac{\tan^{-1} x}{x}\ln(1-x)\, dx$$ $$=\sum_{n\geq 0}\frac{(-1)^n}{2n+1}\int_0^1 x^{2n}\ln(1-x)\, dx=-{\underbrace{\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^2}H_{2n+1}}_{S}}$$ To compute $S$, consider the following: By differentiating both sides, we can see that $$\sum_{n=1}^{\infty}\frac{H_n}{n^2}x^n=\text{Li}_3({x})-\text{Li}_3({1-x})+\ln(1-x)\text{Li}_2({1-x})+\frac{1}{2}\ln^2(1-x)\ln x+\zeta(3)$$ Then by setting $x=i$ and taking the imaginary part, we get alternating odd sums, Which is equal to $S$. $$\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^2}H_{2n+1}=-\Im \text{Li}_3(1-i)-\frac{\pi}{16}\ln^2(2)-\frac{G}{2}\ln(2)$$

Where $\Im$ denotes 'the imaginary part of'. Note that $\Im \text{Li}_3(1-i)\approx -1.26708\cdots$ \begin{equation} I_1=\frac{\pi}{16}\ln^2(2)+\frac{G}{2}\ln(2)+\Im(\trilogarithm{1-i}) \end{equation} which also gives the result of $I_2$ \begin{equation} I_2=\frac{3\pi^3}{32}+\frac{3\pi}{16}\ln^2(2)+\frac{3G}{2}\ln(2)+3\Im(\trilogarithm{1-i}) \end{equation}