Finally I was able to deal with it. The answer of Van der Wolf is opaque (I'm not sure of its validity) but gave me the idea to attack it.
A more friendly form of the sum can be:
$$S=\sum_{n=0}^{\infty}2^{-4n}\sum_{k=0}^{n}\frac{2^{-6k}(2k+2n)!}{k!^2(n+k)!(n-k)!}=\sum_{k=0}^{n}\frac{1}{2^{6k}k!^2}\sum_{n=0}^{\infty}\frac{2^{-4(n-k)}(2n)!}{n!(n-2k)!}\\=\sum_{n=0}^{\infty}\frac{(2n)!}{2^{4n}n!}\sum_{k=0}^{n}\frac{1}{2^{2k}(n-2k)!k!^2}\tag{1}$$
We know that:
$$\sum_{n=0}^{\infty}\frac{(2n)!^2}{2^{5n}n!^4}=\frac{\Gamma{(\frac{1}{4})}^2}{2\pi^{3/2}}\tag{2}.$$
Which follows from the series representations of the complete elliptic of the first kind:
$$\frac{2}{\pi}K(k)=\frac{2}{\pi}\int_{0}^{\pi/2}\frac{dx}{\sqrt{1-k^2\sin^2x}}=\sum_{n=0}^{\infty}\frac{(2n)!^2k^{2n}}{2^{4n}n^4},\tag{3}$$
evaluated at $k=\frac{1}{\sqrt{2}}$. Comparing $(1)$ and $(2)$ suggests that:
$$\sum_{k=0}^{n}\frac{1}{2^{2k}(n-2k)!k!^2}=\frac{(2n)!}{2^{n}n!^3}\tag{4}.$$
So the problem reduces to prove $(4)$.
Without being much creative the remaining is an exercise of induction.
Remarks
Thanks to the comments of @user170231 there is a beatiful derivation of $(4)$ here: coin toss question
In fact we can prove more:
$$S(t)=\sum_{n=0}^{\infty}\sum_{k=0}^{n}\frac{2^{-5k-3n}t^{2(k+n)}(2n+2k)!}{k!^2(n+k)!(n-k)!}=\frac{2}{\pi}K(t)\tag{5}.$$
$$S(t)=\sum_{k=0}^{\infty}\frac{2^{-5k}t^{2k}}{k!^2}\sum_{n=k}^{\infty}\frac{2^{-3n}t^{2n}(2n+2k)!}{(n+k)!(n-k)!}\overset{m=n+k}=\sum_{m=0}^{\infty}\frac{2^{-3m}t^{2m}(2m)!}{m!}\sum_{k=0}^{m}\frac{2^{-2k}}{k!^2(m-2k)!}\\\overset{(3),(4)}=
\sum_{m=0}^{\infty}\frac{(2m)!^2t^{2m}}{2^{4m}m!^4}=\frac{2}{\pi}K(t).$$