While closed form solutions are rare, Taylor series are a very useful tool for such problems. We can rewrite
$y''(x)(1+y(x))=1+x, y(0)=1, y'(0)=0$ in integral form, with z=y':
$$y(x)=1+\int^x_0z(x)\,dx\tag1$$
$$z(x)=\int^x_0\frac{1+x}{1+y(x)}\,dx.\tag2$$
If we have $k$ terms of the series for $y$, we can compute $k$ terms of the integrand in (2), and the integration gives $k+1$. From this, (1) gives $k+2$ terms of $y$, and so on. This is tedious and error-prone by hand, but simple with Pari/GP, say:
(08:09) gp > y=1+O(x)
%2 = 1 + O(x)
(13:04) gp > z=intformal((1+x)/(1+y))
%3 = 1/2*x + O(x^2)
(13:05) gp > y=1+intformal(z)
%4 = 1 + 1/4*x^2 + O(x^3)
(13:05) gp > z=intformal((1+x)/(1+y))
%5 = 1/2*x + 1/4*x^2 - 1/48*x^3 + O(x^4)
(13:05) gp > z=intformal((1+x)/(1+y))
%6 = 1/2*x + 1/4*x^2 - 1/48*x^3 + O(x^4)
(13:05) gp > y=1+intformal(z)
%7 = 1 + 1/4*x^2 + 1/12*x^3 - 1/192*x^4 + O(x^5)
(13:06) gp > z=intformal((1+x)/(1+y))
%8 = 1/2*x + 1/4*x^2 - 1/48*x^3 - 1/48*x^4 - 3/1280*x^5 + O(x^6)
(13:06) gp > y=1+intformal(z)
%9 = 1 + 1/4*x^2 + 1/12*x^3 - 1/192*x^4 - 1/240*x^5 - 1/2560*x^6 + O(x^7)
(13:06) gp > z=intformal((1+x)/(1+y))
%10 = 1/2*x + 1/4*x^2 - 1/48*x^3 - 1/48*x^4 - 3/1280*x^5 + 59/23040*x^6 + 109/129024*x^7 + O(x^8)
(13:07) gp > y=1+intformal(z)
%11 = 1 + 1/4*x^2 + 1/12*x^3 - 1/192*x^4 - 1/240*x^5 - 1/2560*x^6 + 59/161280*x^7 + 109/1032192*x^8 + O(x^9)
With those terms, we'd have $y(1)=759257/573440=1.32403913\ldots$, while a more precise value would be $y(1)=1.32399809566\ldots$. We don't know anything about the radius of convergence in advance, but we can calculate $y(x_0)$ and $z(x_0)$ for some reasonably small value of $x_0$, and repeat the same process to obtain a Taylor series around $x_0$.
https://math.stackexchange.com/questions/3705582/differential-equation-monotonicity1fxfx-1x
https://math.stackexchange.com/questions/3908368/a-function-satisfying-fx1fx-1x?noredirect=1&lq=1
– stowo Mar 15 '25 at 20:11