Question: Evaluate $$\int\limits^{\infty}_{0} \frac{1}{x} \, \ln\left(\frac{x^{3} - x^{2} - x + 1}{x^{3} + x^{2} + x + 1}\right) \, \mathrm{d}x$$
Disclaimer: I really enjoyed solving this problem and it felt very satisfying. I was wondering if there are alternative methods that might be more elegant, insightful, or efficient. I'd love to see how others might approach this!
My approach:
$$I = \int_{0}\limits^{\infty}\frac{1}{x}\ln\left(\frac{(x-1)^2(x+1)}{(x+1)(x^2+1)}\right) \, \mathrm{d}x=\int_{0}\limits^{\infty}\frac{1}{x}\ln\left(\frac{(x-1)^2}{x^2+1}\right) \, \mathrm{d}x$$
$$I = \int_{0}\limits^{\infty}\frac{\ln\left(x^2+1-2x\right)-\ln\left(x^2+1\right)}{x} \, \mathrm{d}x$$
$$I = \int_{0}\limits^{\infty}\int_{0}\limits^{-2}\frac{1}{x^2+1+ax} \,\mathrm{d}a\mathrm{d}x = \int_{0}\limits^{-2}\int_{0}\limits^{\infty}\frac{1}{x^2+1+ax} \,\mathrm{d}x\mathrm{d}a$$
$$I = \int_{0}\limits^{-2}\left(\frac{\pi}{2}-\arctan\left(\frac{a}{\sqrt{4-a^{2}}}\right)\right)\cdot\frac{2}{\sqrt{4-a^{2}}} \, \mathrm{d}a =\int_{0}\limits^{-2}\frac{2}{\sqrt{4-a^2}}\arccos\left(\frac{a}{2}\right) \, \mathrm{d}a $$
$$I = \left[-\left(\cos^{-1}\frac{a}{2}\right)^2\right]_{0}^{-2} = \fbox{$-\frac{3\pi^2}{4}$}$$