Let $a,b,c\ge 0: a+b+c=3$ then prove $$\sqrt{a^{2}\left(b+c\right)+2}+\sqrt{b^{2}\left(c+a\right)+2}+\sqrt{c^{2}\left(a+b\right)+2}\ge \sqrt{6(ab+bc+ca+3)}$$
I check $$\sqrt{a^{2}\left(b+c\right)+2}+\sqrt{b^{2}\left(c+a\right)+2}+\sqrt{c^{2}\left(a+b\right)+2}\ge 3\sqrt2\ge \sqrt{6(ab+bc+ca+3)}$$ which leads $ab+bc+ca<0:$ it is impossible.
Also, by AM-GM $ab+bc+ca\le \frac{(a+b+c)^2}{3}=3$ and we need to prove $$\sqrt{a^{2}\left(b+c\right)+2}+\sqrt{b^{2}\left(c+a\right)+2}+\sqrt{c^{2}\left(a+b\right)+2}\ge 6$$ Could you help me prove the stronger inequality? Thank you.